Metamath Proof Explorer


Theorem cdleme0ex1N

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 9-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l ˙ = K
cdleme0.j ˙ = join K
cdleme0.m ˙ = meet K
cdleme0.a A = Atoms K
cdleme0.h H = LHyp K
cdleme0.u U = P ˙ Q ˙ W
Assertion cdleme0ex1N K HL W H P A ¬ P ˙ W Q A P Q u A u ˙ P ˙ Q u ˙ W

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙ = K
2 cdleme0.j ˙ = join K
3 cdleme0.m ˙ = meet K
4 cdleme0.a A = Atoms K
5 cdleme0.h H = LHyp K
6 cdleme0.u U = P ˙ Q ˙ W
7 simp1 K HL W H P A ¬ P ˙ W Q A P Q K HL W H
8 simp2l K HL W H P A ¬ P ˙ W Q A P Q P A ¬ P ˙ W
9 simp2r K HL W H P A ¬ P ˙ W Q A P Q Q A
10 simp3 K HL W H P A ¬ P ˙ W Q A P Q P Q
11 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
12 7 8 9 10 11 syl112anc K HL W H P A ¬ P ˙ W Q A P Q U A
13 simp2ll K HL W H P A ¬ P ˙ W Q A P Q P A
14 1 2 3 4 5 6 cdlemeulpq K HL W H P A Q A U ˙ P ˙ Q
15 7 13 9 14 syl12anc K HL W H P A ¬ P ˙ W Q A P Q U ˙ P ˙ Q
16 simp1l K HL W H P A ¬ P ˙ W Q A P Q K HL
17 16 hllatd K HL W H P A ¬ P ˙ W Q A P Q K Lat
18 eqid Base K = Base K
19 18 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
20 16 13 9 19 syl3anc K HL W H P A ¬ P ˙ W Q A P Q P ˙ Q Base K
21 simp1r K HL W H P A ¬ P ˙ W Q A P Q W H
22 18 5 lhpbase W H W Base K
23 21 22 syl K HL W H P A ¬ P ˙ W Q A P Q W Base K
24 18 1 3 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
25 17 20 23 24 syl3anc K HL W H P A ¬ P ˙ W Q A P Q P ˙ Q ˙ W ˙ W
26 6 25 eqbrtrid K HL W H P A ¬ P ˙ W Q A P Q U ˙ W
27 breq1 u = U u ˙ P ˙ Q U ˙ P ˙ Q
28 breq1 u = U u ˙ W U ˙ W
29 27 28 anbi12d u = U u ˙ P ˙ Q u ˙ W U ˙ P ˙ Q U ˙ W
30 29 rspcev U A U ˙ P ˙ Q U ˙ W u A u ˙ P ˙ Q u ˙ W
31 12 15 26 30 syl12anc K HL W H P A ¬ P ˙ W Q A P Q u A u ˙ P ˙ Q u ˙ W