Metamath Proof Explorer


Theorem cdleme0moN

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 9-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l ˙ = K
cdleme0.j ˙ = join K
cdleme0.m ˙ = meet K
cdleme0.a A = Atoms K
cdleme0.h H = LHyp K
cdleme0.u U = P ˙ Q ˙ W
Assertion cdleme0moN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R = P R = Q

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙ = K
2 cdleme0.j ˙ = join K
3 cdleme0.m ˙ = meet K
4 cdleme0.a A = Atoms K
5 cdleme0.h H = LHyp K
6 cdleme0.u U = P ˙ Q ˙ W
7 simp23r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r ¬ R ˙ W
8 neanior R P R Q ¬ R = P R = Q
9 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q * r r A P ˙ r = Q ˙ r
10 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R A
11 10 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q R A
12 simprl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q R P
13 simprr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q R Q
14 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q R ˙ P ˙ Q
15 simpl1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q K HL
16 hlcvl K HL K CvLat
17 15 16 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q K CvLat
18 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r P A
19 18 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q P A
20 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r Q A
21 20 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q Q A
22 simpl31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q P Q
23 4 1 2 cvlsupr2 K CvLat P A Q A R A P Q P ˙ R = Q ˙ R R P R Q R ˙ P ˙ Q
24 17 19 21 11 22 23 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q P ˙ R = Q ˙ R R P R Q R ˙ P ˙ Q
25 12 13 14 24 mpbir3and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q P ˙ R = Q ˙ R
26 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r K HL
27 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r W H
28 simp21r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r ¬ P ˙ W
29 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r P Q
30 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
31 26 27 18 28 20 29 30 syl222anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r U A
32 31 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q U A
33 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q K HL W H
34 simpl21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q P A ¬ P ˙ W
35 simpl22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q Q A ¬ Q ˙ W
36 1 2 3 4 5 6 cdleme02N K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q P ˙ U = Q ˙ U U ˙ W
37 36 simpld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q P ˙ U = Q ˙ U
38 33 34 35 22 37 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q P ˙ U = Q ˙ U
39 df-rmo * r A P ˙ r = Q ˙ r * r r A P ˙ r = Q ˙ r
40 oveq2 r = R P ˙ r = P ˙ R
41 oveq2 r = R Q ˙ r = Q ˙ R
42 40 41 eqeq12d r = R P ˙ r = Q ˙ r P ˙ R = Q ˙ R
43 oveq2 r = U P ˙ r = P ˙ U
44 oveq2 r = U Q ˙ r = Q ˙ U
45 43 44 eqeq12d r = U P ˙ r = Q ˙ r P ˙ U = Q ˙ U
46 42 45 rmoi * r A P ˙ r = Q ˙ r R A P ˙ R = Q ˙ R U A P ˙ U = Q ˙ U R = U
47 39 46 syl3an1br * r r A P ˙ r = Q ˙ r R A P ˙ R = Q ˙ R U A P ˙ U = Q ˙ U R = U
48 9 11 25 32 38 47 syl122anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q R = U
49 36 simprd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q U ˙ W
50 33 34 35 22 49 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q U ˙ W
51 48 50 eqbrtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q R ˙ W
52 51 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R P R Q R ˙ W
53 8 52 syl5bir K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r ¬ R = P R = Q R ˙ W
54 7 53 mt3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q * r r A P ˙ r = Q ˙ r R = P R = Q