| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme1.l |
|
| 2 |
|
cdleme1.j |
|
| 3 |
|
cdleme1.m |
|
| 4 |
|
cdleme1.a |
|
| 5 |
|
cdleme1.h |
|
| 6 |
|
cdleme1.u |
|
| 7 |
|
cdleme1.f |
|
| 8 |
7
|
oveq2i |
|
| 9 |
|
simpll |
|
| 10 |
|
simpr3l |
|
| 11 |
|
hllat |
|
| 12 |
11
|
ad2antrr |
|
| 13 |
|
eqid |
|
| 14 |
13 4
|
atbase |
|
| 15 |
10 14
|
syl |
|
| 16 |
|
simpr1 |
|
| 17 |
13 4
|
atbase |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
simpr2 |
|
| 20 |
13 4
|
atbase |
|
| 21 |
19 20
|
syl |
|
| 22 |
13 2
|
latjcl |
|
| 23 |
12 18 21 22
|
syl3anc |
|
| 24 |
13 5
|
lhpbase |
|
| 25 |
24
|
ad2antlr |
|
| 26 |
13 3
|
latmcl |
|
| 27 |
12 23 25 26
|
syl3anc |
|
| 28 |
6 27
|
eqeltrid |
|
| 29 |
13 2
|
latjcl |
|
| 30 |
12 15 28 29
|
syl3anc |
|
| 31 |
13 2
|
latjcl |
|
| 32 |
12 18 15 31
|
syl3anc |
|
| 33 |
13 3
|
latmcl |
|
| 34 |
12 32 25 33
|
syl3anc |
|
| 35 |
13 2
|
latjcl |
|
| 36 |
12 21 34 35
|
syl3anc |
|
| 37 |
13 1 2
|
latlej1 |
|
| 38 |
12 15 28 37
|
syl3anc |
|
| 39 |
13 1 2 3 4
|
atmod3i1 |
|
| 40 |
9 10 30 36 38 39
|
syl131anc |
|
| 41 |
13 1 2
|
latlej2 |
|
| 42 |
12 18 15 41
|
syl3anc |
|
| 43 |
13 1 2 3 4
|
atmod3i1 |
|
| 44 |
9 10 32 25 42 43
|
syl131anc |
|
| 45 |
|
eqid |
|
| 46 |
1 2 45 4 5
|
lhpjat2 |
|
| 47 |
46
|
3ad2antr3 |
|
| 48 |
47
|
oveq2d |
|
| 49 |
|
hlol |
|
| 50 |
49
|
ad2antrr |
|
| 51 |
13 3 45
|
olm11 |
|
| 52 |
50 32 51
|
syl2anc |
|
| 53 |
44 48 52
|
3eqtrd |
|
| 54 |
53
|
oveq2d |
|
| 55 |
13 2
|
latj12 |
|
| 56 |
12 21 15 34 55
|
syl13anc |
|
| 57 |
13 2
|
latj13 |
|
| 58 |
12 21 18 15 57
|
syl13anc |
|
| 59 |
54 56 58
|
3eqtr3rd |
|
| 60 |
59
|
oveq2d |
|
| 61 |
1 2 3 4 5 6
|
cdlemeulpq |
|
| 62 |
61
|
3adantr3 |
|
| 63 |
13 1 2
|
latjlej2 |
|
| 64 |
12 28 23 15 63
|
syl13anc |
|
| 65 |
62 64
|
mpd |
|
| 66 |
13 2
|
latjcl |
|
| 67 |
12 15 23 66
|
syl3anc |
|
| 68 |
13 1 3
|
latleeqm1 |
|
| 69 |
12 30 67 68
|
syl3anc |
|
| 70 |
65 69
|
mpbid |
|
| 71 |
40 60 70
|
3eqtr2rd |
|
| 72 |
8 71
|
eqtr4id |
|