Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme1.l |
|
2 |
|
cdleme1.j |
|
3 |
|
cdleme1.m |
|
4 |
|
cdleme1.a |
|
5 |
|
cdleme1.h |
|
6 |
|
cdleme1.u |
|
7 |
|
cdleme1.f |
|
8 |
7
|
oveq2i |
|
9 |
|
simpll |
|
10 |
|
simpr3l |
|
11 |
|
hllat |
|
12 |
11
|
ad2antrr |
|
13 |
|
eqid |
|
14 |
13 4
|
atbase |
|
15 |
10 14
|
syl |
|
16 |
|
simpr1 |
|
17 |
13 4
|
atbase |
|
18 |
16 17
|
syl |
|
19 |
|
simpr2 |
|
20 |
13 4
|
atbase |
|
21 |
19 20
|
syl |
|
22 |
13 2
|
latjcl |
|
23 |
12 18 21 22
|
syl3anc |
|
24 |
13 5
|
lhpbase |
|
25 |
24
|
ad2antlr |
|
26 |
13 3
|
latmcl |
|
27 |
12 23 25 26
|
syl3anc |
|
28 |
6 27
|
eqeltrid |
|
29 |
13 2
|
latjcl |
|
30 |
12 15 28 29
|
syl3anc |
|
31 |
13 2
|
latjcl |
|
32 |
12 18 15 31
|
syl3anc |
|
33 |
13 3
|
latmcl |
|
34 |
12 32 25 33
|
syl3anc |
|
35 |
13 2
|
latjcl |
|
36 |
12 21 34 35
|
syl3anc |
|
37 |
13 1 2
|
latlej1 |
|
38 |
12 15 28 37
|
syl3anc |
|
39 |
13 1 2 3 4
|
atmod3i1 |
|
40 |
9 10 30 36 38 39
|
syl131anc |
|
41 |
13 1 2
|
latlej2 |
|
42 |
12 18 15 41
|
syl3anc |
|
43 |
13 1 2 3 4
|
atmod3i1 |
|
44 |
9 10 32 25 42 43
|
syl131anc |
|
45 |
|
eqid |
|
46 |
1 2 45 4 5
|
lhpjat2 |
|
47 |
46
|
3ad2antr3 |
|
48 |
47
|
oveq2d |
|
49 |
|
hlol |
|
50 |
49
|
ad2antrr |
|
51 |
13 3 45
|
olm11 |
|
52 |
50 32 51
|
syl2anc |
|
53 |
44 48 52
|
3eqtrd |
|
54 |
53
|
oveq2d |
|
55 |
13 2
|
latj12 |
|
56 |
12 21 15 34 55
|
syl13anc |
|
57 |
13 2
|
latj13 |
|
58 |
12 21 18 15 57
|
syl13anc |
|
59 |
54 56 58
|
3eqtr3rd |
|
60 |
59
|
oveq2d |
|
61 |
1 2 3 4 5 6
|
cdlemeulpq |
|
62 |
61
|
3adantr3 |
|
63 |
13 1 2
|
latjlej2 |
|
64 |
12 28 23 15 63
|
syl13anc |
|
65 |
62 64
|
mpd |
|
66 |
13 2
|
latjcl |
|
67 |
12 15 23 66
|
syl3anc |
|
68 |
13 1 3
|
latleeqm1 |
|
69 |
12 30 67 68
|
syl3anc |
|
70 |
65 69
|
mpbid |
|
71 |
40 60 70
|
3eqtr2rd |
|
72 |
8 71
|
eqtr4id |
|