Metamath Proof Explorer


Theorem cdleme1

Description: Part of proof of Lemma E in Crawley p. 113. F represents their f(r). Here we show r \/ f(r) = r \/ u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙ = K
cdleme1.j ˙ = join K
cdleme1.m ˙ = meet K
cdleme1.a A = Atoms K
cdleme1.h H = LHyp K
cdleme1.u U = P ˙ Q ˙ W
cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
Assertion cdleme1 K HL W H P A Q A R A ¬ R ˙ W R ˙ F = R ˙ U

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙ = K
2 cdleme1.j ˙ = join K
3 cdleme1.m ˙ = meet K
4 cdleme1.a A = Atoms K
5 cdleme1.h H = LHyp K
6 cdleme1.u U = P ˙ Q ˙ W
7 cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 7 oveq2i R ˙ F = R ˙ R ˙ U ˙ Q ˙ P ˙ R ˙ W
9 simpll K HL W H P A Q A R A ¬ R ˙ W K HL
10 simpr3l K HL W H P A Q A R A ¬ R ˙ W R A
11 hllat K HL K Lat
12 11 ad2antrr K HL W H P A Q A R A ¬ R ˙ W K Lat
13 eqid Base K = Base K
14 13 4 atbase R A R Base K
15 10 14 syl K HL W H P A Q A R A ¬ R ˙ W R Base K
16 simpr1 K HL W H P A Q A R A ¬ R ˙ W P A
17 13 4 atbase P A P Base K
18 16 17 syl K HL W H P A Q A R A ¬ R ˙ W P Base K
19 simpr2 K HL W H P A Q A R A ¬ R ˙ W Q A
20 13 4 atbase Q A Q Base K
21 19 20 syl K HL W H P A Q A R A ¬ R ˙ W Q Base K
22 13 2 latjcl K Lat P Base K Q Base K P ˙ Q Base K
23 12 18 21 22 syl3anc K HL W H P A Q A R A ¬ R ˙ W P ˙ Q Base K
24 13 5 lhpbase W H W Base K
25 24 ad2antlr K HL W H P A Q A R A ¬ R ˙ W W Base K
26 13 3 latmcl K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W Base K
27 12 23 25 26 syl3anc K HL W H P A Q A R A ¬ R ˙ W P ˙ Q ˙ W Base K
28 6 27 eqeltrid K HL W H P A Q A R A ¬ R ˙ W U Base K
29 13 2 latjcl K Lat R Base K U Base K R ˙ U Base K
30 12 15 28 29 syl3anc K HL W H P A Q A R A ¬ R ˙ W R ˙ U Base K
31 13 2 latjcl K Lat P Base K R Base K P ˙ R Base K
32 12 18 15 31 syl3anc K HL W H P A Q A R A ¬ R ˙ W P ˙ R Base K
33 13 3 latmcl K Lat P ˙ R Base K W Base K P ˙ R ˙ W Base K
34 12 32 25 33 syl3anc K HL W H P A Q A R A ¬ R ˙ W P ˙ R ˙ W Base K
35 13 2 latjcl K Lat Q Base K P ˙ R ˙ W Base K Q ˙ P ˙ R ˙ W Base K
36 12 21 34 35 syl3anc K HL W H P A Q A R A ¬ R ˙ W Q ˙ P ˙ R ˙ W Base K
37 13 1 2 latlej1 K Lat R Base K U Base K R ˙ R ˙ U
38 12 15 28 37 syl3anc K HL W H P A Q A R A ¬ R ˙ W R ˙ R ˙ U
39 13 1 2 3 4 atmod3i1 K HL R A R ˙ U Base K Q ˙ P ˙ R ˙ W Base K R ˙ R ˙ U R ˙ R ˙ U ˙ Q ˙ P ˙ R ˙ W = R ˙ U ˙ R ˙ Q ˙ P ˙ R ˙ W
40 9 10 30 36 38 39 syl131anc K HL W H P A Q A R A ¬ R ˙ W R ˙ R ˙ U ˙ Q ˙ P ˙ R ˙ W = R ˙ U ˙ R ˙ Q ˙ P ˙ R ˙ W
41 13 1 2 latlej2 K Lat P Base K R Base K R ˙ P ˙ R
42 12 18 15 41 syl3anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ R
43 13 1 2 3 4 atmod3i1 K HL R A P ˙ R Base K W Base K R ˙ P ˙ R R ˙ P ˙ R ˙ W = P ˙ R ˙ R ˙ W
44 9 10 32 25 42 43 syl131anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ R ˙ W = P ˙ R ˙ R ˙ W
45 eqid 1. K = 1. K
46 1 2 45 4 5 lhpjat2 K HL W H R A ¬ R ˙ W R ˙ W = 1. K
47 46 3ad2antr3 K HL W H P A Q A R A ¬ R ˙ W R ˙ W = 1. K
48 47 oveq2d K HL W H P A Q A R A ¬ R ˙ W P ˙ R ˙ R ˙ W = P ˙ R ˙ 1. K
49 hlol K HL K OL
50 49 ad2antrr K HL W H P A Q A R A ¬ R ˙ W K OL
51 13 3 45 olm11 K OL P ˙ R Base K P ˙ R ˙ 1. K = P ˙ R
52 50 32 51 syl2anc K HL W H P A Q A R A ¬ R ˙ W P ˙ R ˙ 1. K = P ˙ R
53 44 48 52 3eqtrd K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ R ˙ W = P ˙ R
54 53 oveq2d K HL W H P A Q A R A ¬ R ˙ W Q ˙ R ˙ P ˙ R ˙ W = Q ˙ P ˙ R
55 13 2 latj12 K Lat Q Base K R Base K P ˙ R ˙ W Base K Q ˙ R ˙ P ˙ R ˙ W = R ˙ Q ˙ P ˙ R ˙ W
56 12 21 15 34 55 syl13anc K HL W H P A Q A R A ¬ R ˙ W Q ˙ R ˙ P ˙ R ˙ W = R ˙ Q ˙ P ˙ R ˙ W
57 13 2 latj13 K Lat Q Base K P Base K R Base K Q ˙ P ˙ R = R ˙ P ˙ Q
58 12 21 18 15 57 syl13anc K HL W H P A Q A R A ¬ R ˙ W Q ˙ P ˙ R = R ˙ P ˙ Q
59 54 56 58 3eqtr3rd K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q = R ˙ Q ˙ P ˙ R ˙ W
60 59 oveq2d K HL W H P A Q A R A ¬ R ˙ W R ˙ U ˙ R ˙ P ˙ Q = R ˙ U ˙ R ˙ Q ˙ P ˙ R ˙ W
61 1 2 3 4 5 6 cdlemeulpq K HL W H P A Q A U ˙ P ˙ Q
62 61 3adantr3 K HL W H P A Q A R A ¬ R ˙ W U ˙ P ˙ Q
63 13 1 2 latjlej2 K Lat U Base K P ˙ Q Base K R Base K U ˙ P ˙ Q R ˙ U ˙ R ˙ P ˙ Q
64 12 28 23 15 63 syl13anc K HL W H P A Q A R A ¬ R ˙ W U ˙ P ˙ Q R ˙ U ˙ R ˙ P ˙ Q
65 62 64 mpd K HL W H P A Q A R A ¬ R ˙ W R ˙ U ˙ R ˙ P ˙ Q
66 13 2 latjcl K Lat R Base K P ˙ Q Base K R ˙ P ˙ Q Base K
67 12 15 23 66 syl3anc K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q Base K
68 13 1 3 latleeqm1 K Lat R ˙ U Base K R ˙ P ˙ Q Base K R ˙ U ˙ R ˙ P ˙ Q R ˙ U ˙ R ˙ P ˙ Q = R ˙ U
69 12 30 67 68 syl3anc K HL W H P A Q A R A ¬ R ˙ W R ˙ U ˙ R ˙ P ˙ Q R ˙ U ˙ R ˙ P ˙ Q = R ˙ U
70 65 69 mpbid K HL W H P A Q A R A ¬ R ˙ W R ˙ U ˙ R ˙ P ˙ Q = R ˙ U
71 40 60 70 3eqtr2rd K HL W H P A Q A R A ¬ R ˙ W R ˙ U = R ˙ R ˙ U ˙ Q ˙ P ˙ R ˙ W
72 8 71 eqtr4id K HL W H P A Q A R A ¬ R ˙ W R ˙ F = R ˙ U