Metamath Proof Explorer


Theorem cdleme10tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. Y represents t_2. In their notation, we prove t \/ t_2 = t \/ r. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme10t.l ˙ = K
cdleme10t.j ˙ = join K
cdleme10t.m ˙ = meet K
cdleme10t.a A = Atoms K
cdleme10t.h H = LHyp K
cdleme10t.y Y = R ˙ T ˙ W
Assertion cdleme10tN K HL W H R A T A ¬ T ˙ W T ˙ Y = T ˙ R

Proof

Step Hyp Ref Expression
1 cdleme10t.l ˙ = K
2 cdleme10t.j ˙ = join K
3 cdleme10t.m ˙ = meet K
4 cdleme10t.a A = Atoms K
5 cdleme10t.h H = LHyp K
6 cdleme10t.y Y = R ˙ T ˙ W
7 1 2 3 4 5 6 cdleme10 K HL W H R A T A ¬ T ˙ W T ˙ Y = T ˙ R