Metamath Proof Explorer


Theorem cdleme11a

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 12-Jun-2012)

Ref Expression
Hypotheses cdleme11.l ˙ = K
cdleme11.j ˙ = join K
cdleme11.m ˙ = meet K
cdleme11.a A = Atoms K
cdleme11.h H = LHyp K
cdleme11.u U = P ˙ Q ˙ W
Assertion cdleme11a K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T S ˙ U = S ˙ T

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙ = K
2 cdleme11.j ˙ = join K
3 cdleme11.m ˙ = meet K
4 cdleme11.a A = Atoms K
5 cdleme11.h H = LHyp K
6 cdleme11.u U = P ˙ Q ˙ W
7 simp3rr K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T U ˙ S ˙ T
8 simp1l K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T K HL
9 simp1 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T K HL W H
10 simp2l K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T P A ¬ P ˙ W
11 simp2r K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T Q A P Q
12 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
13 9 10 11 12 syl3anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T U A
14 simp3rl K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T T A
15 simp3ll K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T S A
16 simp2ll K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T P A
17 simp2rl K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T Q A
18 simp3l K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T S A ¬ S ˙ W
19 1 2 3 4 5 6 cdleme0c K HL W H P A Q A S A ¬ S ˙ W U S
20 9 16 17 18 19 syl121anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T U S
21 1 2 4 hlatexchb1 K HL U A T A S A U S U ˙ S ˙ T S ˙ U = S ˙ T
22 8 13 14 15 20 21 syl131anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T U ˙ S ˙ T S ˙ U = S ˙ T
23 7 22 mpbid K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A U ˙ S ˙ T S ˙ U = S ˙ T