Metamath Proof Explorer


Theorem cdleme11fN

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 14-Jun-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme11.l ˙ = K
cdleme11.j ˙ = join K
cdleme11.m ˙ = meet K
cdleme11.a A = Atoms K
cdleme11.h H = LHyp K
cdleme11.u U = P ˙ Q ˙ W
cdleme11.c C = P ˙ S ˙ W
cdleme11.d D = P ˙ T ˙ W
cdleme11.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
Assertion cdleme11fN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q F C

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙ = K
2 cdleme11.j ˙ = join K
3 cdleme11.m ˙ = meet K
4 cdleme11.a A = Atoms K
5 cdleme11.h H = LHyp K
6 cdleme11.u U = P ˙ Q ˙ W
7 cdleme11.c C = P ˙ S ˙ W
8 cdleme11.d D = P ˙ T ˙ W
9 cdleme11.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
10 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q K HL
11 10 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q K Lat
12 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P A
13 eqid Base K = Base K
14 13 4 atbase P A P Base K
15 12 14 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P Base K
16 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q S A
17 13 4 atbase S A S Base K
18 16 17 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q S Base K
19 13 2 latjcl K Lat P Base K S Base K P ˙ S Base K
20 11 15 18 19 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P ˙ S Base K
21 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q W H
22 13 5 lhpbase W H W Base K
23 21 22 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q W Base K
24 13 1 3 latmle2 K Lat P ˙ S Base K W Base K P ˙ S ˙ W ˙ W
25 11 20 23 24 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P ˙ S ˙ W ˙ W
26 7 25 eqbrtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q C ˙ W
27 1 2 3 4 5 6 9 cdleme3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q ¬ F ˙ W
28 nbrne2 C ˙ W ¬ F ˙ W C F
29 28 necomd C ˙ W ¬ F ˙ W F C
30 26 27 29 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q F C