Metamath Proof Explorer


Theorem cdleme12

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. F and G represent f(s) and f(t) respectively. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses cdleme12.l ˙ = K
cdleme12.j ˙ = join K
cdleme12.m ˙ = meet K
cdleme12.a A = Atoms K
cdleme12.h H = LHyp K
cdleme12.u U = P ˙ Q ˙ W
cdleme12.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme12.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
Assertion cdleme12 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S ˙ F ˙ T ˙ G = U

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙ = K
2 cdleme12.j ˙ = join K
3 cdleme12.m ˙ = meet K
4 cdleme12.a A = Atoms K
5 cdleme12.h H = LHyp K
6 cdleme12.u U = P ˙ Q ˙ W
7 cdleme12.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme12.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 simp1 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T K HL W H
10 simp21l K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T P A
11 simp22 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T Q A
12 simp31 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S A ¬ S ˙ W
13 1 2 3 4 5 6 7 cdleme1 K HL W H P A Q A S A ¬ S ˙ W S ˙ F = S ˙ U
14 9 10 11 12 13 syl13anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S ˙ F = S ˙ U
15 simp1l K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T K HL
16 simp21 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T P A ¬ P ˙ W
17 simp23 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T P Q
18 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
19 9 16 11 17 18 syl112anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T U A
20 simp31l K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S A
21 2 4 hlatjcom K HL U A S A U ˙ S = S ˙ U
22 15 19 20 21 syl3anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T U ˙ S = S ˙ U
23 14 22 eqtr4d K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S ˙ F = U ˙ S
24 simp32 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T T A ¬ T ˙ W
25 1 2 3 4 5 6 8 cdleme1 K HL W H P A Q A T A ¬ T ˙ W T ˙ G = T ˙ U
26 9 10 11 24 25 syl13anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T T ˙ G = T ˙ U
27 simp32l K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T T A
28 2 4 hlatjcom K HL U A T A U ˙ T = T ˙ U
29 15 19 27 28 syl3anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T U ˙ T = T ˙ U
30 26 29 eqtr4d K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T T ˙ G = U ˙ T
31 23 30 oveq12d K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S ˙ F ˙ T ˙ G = U ˙ S ˙ U ˙ T
32 simp33 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S T ¬ U ˙ S ˙ T
33 1 2 3 4 2llnma2 K HL S A T A U A S T ¬ U ˙ S ˙ T U ˙ S ˙ U ˙ T = U
34 15 20 27 19 32 33 syl131anc K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T U ˙ S ˙ U ˙ T = U
35 31 34 eqtrd K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S ˙ F ˙ T ˙ G = U