Metamath Proof Explorer


Theorem cdleme15

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, showing, in their notation, (s \/ t) /\ (f(s) \/ f(t)) <_ w. We use F , G for f(s), f(t) respectively. (Contributed by NM, 10-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙ = K
cdleme12.j ˙ = join K
cdleme12.m ˙ = meet K
cdleme12.a A = Atoms K
cdleme12.h H = LHyp K
cdleme12.u U = P ˙ Q ˙ W
cdleme12.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme12.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
Assertion cdleme15 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ T ˙ F ˙ G ˙ W

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙ = K
2 cdleme12.j ˙ = join K
3 cdleme12.m ˙ = meet K
4 cdleme12.a A = Atoms K
5 cdleme12.h H = LHyp K
6 cdleme12.u U = P ˙ Q ˙ W
7 cdleme12.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme12.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 eqid Base K = Base K
10 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T K HL
11 10 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T K Lat
12 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S A
13 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T A
14 9 2 4 hlatjcl K HL S A T A S ˙ T Base K
15 10 12 13 14 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ T Base K
16 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T W H
17 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P A
18 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q A
19 1 2 3 4 5 6 7 9 cdleme1b K HL W H P A Q A S A F Base K
20 10 16 17 18 12 19 syl23anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F Base K
21 1 2 3 4 5 6 8 9 cdleme1b K HL W H P A Q A T A G Base K
22 10 16 17 18 13 21 syl23anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T G Base K
23 9 2 latjcl K Lat F Base K G Base K F ˙ G Base K
24 11 20 22 23 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F ˙ G Base K
25 9 3 latmcl K Lat S ˙ T Base K F ˙ G Base K S ˙ T ˙ F ˙ G Base K
26 11 15 24 25 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ T ˙ F ˙ G Base K
27 9 2 4 hlatjcl K HL T A P A T ˙ P Base K
28 10 13 17 27 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P Base K
29 9 4 atbase Q A Q Base K
30 18 29 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q Base K
31 9 2 latjcl K Lat G Base K Q Base K G ˙ Q Base K
32 11 22 30 31 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T G ˙ Q Base K
33 9 3 latmcl K Lat T ˙ P Base K G ˙ Q Base K T ˙ P ˙ G ˙ Q Base K
34 11 28 32 33 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P ˙ G ˙ Q Base K
35 9 2 4 hlatjcl K HL P A S A P ˙ S Base K
36 10 17 12 35 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ S Base K
37 9 2 latjcl K Lat Q Base K F Base K Q ˙ F Base K
38 11 30 20 37 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q ˙ F Base K
39 9 3 latmcl K Lat P ˙ S Base K Q ˙ F Base K P ˙ S ˙ Q ˙ F Base K
40 11 36 38 39 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ S ˙ Q ˙ F Base K
41 9 2 latjcl K Lat T ˙ P ˙ G ˙ Q Base K P ˙ S ˙ Q ˙ F Base K T ˙ P ˙ G ˙ Q ˙ P ˙ S ˙ Q ˙ F Base K
42 11 34 40 41 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P ˙ G ˙ Q ˙ P ˙ S ˙ Q ˙ F Base K
43 9 5 lhpbase W H W Base K
44 16 43 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T W Base K
45 1 2 3 4 5 6 7 8 cdleme14 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ T ˙ F ˙ G ˙ T ˙ P ˙ G ˙ Q ˙ P ˙ S ˙ Q ˙ F
46 eqid P ˙ S ˙ W = P ˙ S ˙ W
47 eqid P ˙ T ˙ W = P ˙ T ˙ W
48 1 2 3 4 5 6 7 8 46 47 cdleme15a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P ˙ G ˙ Q ˙ P ˙ S ˙ Q ˙ F = P ˙ P ˙ T ˙ W ˙ Q ˙ P ˙ T ˙ W ˙ P ˙ P ˙ S ˙ W ˙ Q ˙ P ˙ S ˙ W
49 1 2 3 4 5 6 7 8 46 47 cdleme15c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ P ˙ T ˙ W ˙ Q ˙ P ˙ T ˙ W ˙ P ˙ P ˙ S ˙ W ˙ Q ˙ P ˙ S ˙ W = P ˙ T ˙ W ˙ P ˙ S ˙ W
50 48 49 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P ˙ G ˙ Q ˙ P ˙ S ˙ Q ˙ F = P ˙ T ˙ W ˙ P ˙ S ˙ W
51 1 2 3 4 5 6 7 8 46 47 cdleme15d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ T ˙ W ˙ P ˙ S ˙ W ˙ W
52 50 51 eqbrtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P ˙ G ˙ Q ˙ P ˙ S ˙ Q ˙ F ˙ W
53 9 1 11 26 42 44 45 52 lattrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ T ˙ F ˙ G ˙ W