Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme12.l |
|
2 |
|
cdleme12.j |
|
3 |
|
cdleme12.m |
|
4 |
|
cdleme12.a |
|
5 |
|
cdleme12.h |
|
6 |
|
cdleme12.u |
|
7 |
|
cdleme12.f |
|
8 |
|
cdleme12.g |
|
9 |
|
eqid |
|
10 |
|
simp11l |
|
11 |
10
|
hllatd |
|
12 |
|
simp21l |
|
13 |
|
simp22l |
|
14 |
9 2 4
|
hlatjcl |
|
15 |
10 12 13 14
|
syl3anc |
|
16 |
|
simp11r |
|
17 |
|
simp12l |
|
18 |
|
simp13l |
|
19 |
1 2 3 4 5 6 7 9
|
cdleme1b |
|
20 |
10 16 17 18 12 19
|
syl23anc |
|
21 |
1 2 3 4 5 6 8 9
|
cdleme1b |
|
22 |
10 16 17 18 13 21
|
syl23anc |
|
23 |
9 2
|
latjcl |
|
24 |
11 20 22 23
|
syl3anc |
|
25 |
9 3
|
latmcl |
|
26 |
11 15 24 25
|
syl3anc |
|
27 |
9 2 4
|
hlatjcl |
|
28 |
10 13 17 27
|
syl3anc |
|
29 |
9 4
|
atbase |
|
30 |
18 29
|
syl |
|
31 |
9 2
|
latjcl |
|
32 |
11 22 30 31
|
syl3anc |
|
33 |
9 3
|
latmcl |
|
34 |
11 28 32 33
|
syl3anc |
|
35 |
9 2 4
|
hlatjcl |
|
36 |
10 17 12 35
|
syl3anc |
|
37 |
9 2
|
latjcl |
|
38 |
11 30 20 37
|
syl3anc |
|
39 |
9 3
|
latmcl |
|
40 |
11 36 38 39
|
syl3anc |
|
41 |
9 2
|
latjcl |
|
42 |
11 34 40 41
|
syl3anc |
|
43 |
9 5
|
lhpbase |
|
44 |
16 43
|
syl |
|
45 |
1 2 3 4 5 6 7 8
|
cdleme14 |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
1 2 3 4 5 6 7 8 46 47
|
cdleme15a |
|
49 |
1 2 3 4 5 6 7 8 46 47
|
cdleme15c |
|
50 |
48 49
|
eqtrd |
|
51 |
1 2 3 4 5 6 7 8 46 47
|
cdleme15d |
|
52 |
50 51
|
eqbrtrd |
|
53 |
9 1 11 26 42 44 45 52
|
lattrd |
|