Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme12.l |
|
2 |
|
cdleme12.j |
|
3 |
|
cdleme12.m |
|
4 |
|
cdleme12.a |
|
5 |
|
cdleme12.h |
|
6 |
|
cdleme12.u |
|
7 |
|
cdleme12.f |
|
8 |
|
cdleme12.g |
|
9 |
|
cdleme15.c |
|
10 |
|
cdleme15.x |
|
11 |
|
simp11l |
|
12 |
|
simp11r |
|
13 |
|
simp12l |
|
14 |
|
simp12r |
|
15 |
|
simp22l |
|
16 |
1 2 3 4 5 10
|
cdleme8 |
|
17 |
11 12 13 14 15 16
|
syl221anc |
|
18 |
2 4
|
hlatjcom |
|
19 |
11 13 15 18
|
syl3anc |
|
20 |
17 19
|
eqtr2d |
|
21 |
|
simp11 |
|
22 |
|
simp12 |
|
23 |
|
simp13 |
|
24 |
|
simp22 |
|
25 |
|
simp23l |
|
26 |
|
simp32 |
|
27 |
1 2 3 4 5 6 8
|
cdleme3fa |
|
28 |
21 22 23 24 25 26 27
|
syl132anc |
|
29 |
|
simp13l |
|
30 |
2 4
|
hlatjcom |
|
31 |
11 28 29 30
|
syl3anc |
|
32 |
1 2 3 4 5 6 10 6 8
|
cdleme11g |
|
33 |
21 13 23 15 25 32
|
syl131anc |
|
34 |
31 33
|
eqtrd |
|
35 |
20 34
|
oveq12d |
|
36 |
|
simp21l |
|
37 |
1 2 3 4 5 9
|
cdleme8 |
|
38 |
11 12 13 14 36 37
|
syl221anc |
|
39 |
38
|
eqcomd |
|
40 |
1 2 3 4 5 6 9 6 7
|
cdleme11g |
|
41 |
21 13 23 36 25 40
|
syl131anc |
|
42 |
39 41
|
oveq12d |
|
43 |
35 42
|
oveq12d |
|