Metamath Proof Explorer


Theorem cdleme15a

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, showing, in their notation, ((s \/ p) /\ (f(s) \/ q)) \/ ((t \/ p) /\ (f(t) \/ q))=((p \/ s_1) /\ (q \/ s_1)) \/ ((p \/ t_1) /\ (q \/ t_1)). We represent f(s), f(t), s_1, and t_1 with F , G , C , and X respectively. The order of our operations is slightly different. (Contributed by NM, 9-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙ = K
cdleme12.j ˙ = join K
cdleme12.m ˙ = meet K
cdleme12.a A = Atoms K
cdleme12.h H = LHyp K
cdleme12.u U = P ˙ Q ˙ W
cdleme12.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme12.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
cdleme15.c C = P ˙ S ˙ W
cdleme15.x X = P ˙ T ˙ W
Assertion cdleme15a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P ˙ G ˙ Q ˙ P ˙ S ˙ Q ˙ F = P ˙ X ˙ Q ˙ X ˙ P ˙ C ˙ Q ˙ C

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙ = K
2 cdleme12.j ˙ = join K
3 cdleme12.m ˙ = meet K
4 cdleme12.a A = Atoms K
5 cdleme12.h H = LHyp K
6 cdleme12.u U = P ˙ Q ˙ W
7 cdleme12.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme12.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 cdleme15.c C = P ˙ S ˙ W
10 cdleme15.x X = P ˙ T ˙ W
11 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T K HL
12 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T W H
13 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P A
14 simp12r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T ¬ P ˙ W
15 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T A
16 1 2 3 4 5 10 cdleme8 K HL W H P A ¬ P ˙ W T A P ˙ X = P ˙ T
17 11 12 13 14 15 16 syl221anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ X = P ˙ T
18 2 4 hlatjcom K HL P A T A P ˙ T = T ˙ P
19 11 13 15 18 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ T = T ˙ P
20 17 19 eqtr2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P = P ˙ X
21 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T K HL W H
22 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P A ¬ P ˙ W
23 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q A ¬ Q ˙ W
24 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T A ¬ T ˙ W
25 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P Q
26 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T ¬ T ˙ P ˙ Q
27 1 2 3 4 5 6 8 cdleme3fa K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W T A ¬ T ˙ W P Q ¬ T ˙ P ˙ Q G A
28 21 22 23 24 25 26 27 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T G A
29 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q A
30 2 4 hlatjcom K HL G A Q A G ˙ Q = Q ˙ G
31 11 28 29 30 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T G ˙ Q = Q ˙ G
32 1 2 3 4 5 6 10 6 8 cdleme11g K HL W H P A Q A ¬ Q ˙ W T A P Q Q ˙ G = Q ˙ X
33 21 13 23 15 25 32 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q ˙ G = Q ˙ X
34 31 33 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T G ˙ Q = Q ˙ X
35 20 34 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P ˙ G ˙ Q = P ˙ X ˙ Q ˙ X
36 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S A
37 1 2 3 4 5 9 cdleme8 K HL W H P A ¬ P ˙ W S A P ˙ C = P ˙ S
38 11 12 13 14 36 37 syl221anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ C = P ˙ S
39 38 eqcomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ S = P ˙ C
40 1 2 3 4 5 6 9 6 7 cdleme11g K HL W H P A Q A ¬ Q ˙ W S A P Q Q ˙ F = Q ˙ C
41 21 13 23 36 25 40 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q ˙ F = Q ˙ C
42 39 41 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P ˙ S ˙ Q ˙ F = P ˙ C ˙ Q ˙ C
43 35 42 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T ˙ P ˙ G ˙ Q ˙ P ˙ S ˙ Q ˙ F = P ˙ X ˙ Q ˙ X ˙ P ˙ C ˙ Q ˙ C