Metamath Proof Explorer


Theorem cdleme16b

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. F and G represent f(s) and f(t) respectively. It is unclear how this follows from s \/ u =/= t \/ u, as the authors state, and we used a different proof. (Note: the antecedent -. T .<_ ( P .\/ Q ) is not used.) (Contributed by NM, 11-Oct-2012)

Ref Expression
Hypotheses cdleme12.l ˙ = K
cdleme12.j ˙ = join K
cdleme12.m ˙ = meet K
cdleme12.a A = Atoms K
cdleme12.h H = LHyp K
cdleme12.u U = P ˙ Q ˙ W
cdleme12.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme12.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
Assertion cdleme16b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F G

Proof

Step Hyp Ref Expression
1 cdleme12.l ˙ = K
2 cdleme12.j ˙ = join K
3 cdleme12.m ˙ = meet K
4 cdleme12.a A = Atoms K
5 cdleme12.h H = LHyp K
6 cdleme12.u U = P ˙ Q ˙ W
7 cdleme12.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme12.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T K HL W H
10 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P A ¬ P ˙ W
11 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q A ¬ Q ˙ W
12 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S A ¬ S ˙ W
13 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P Q
14 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T ¬ S ˙ P ˙ Q
15 eqid P ˙ S ˙ W = P ˙ S ˙ W
16 1 2 3 4 5 6 7 15 cdleme3g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q F U
17 9 10 11 12 13 14 16 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F U
18 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T K HL
19 18 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T K Lat
20 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S A
21 1 2 3 4 5 6 7 cdleme3fa K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q F A
22 9 10 11 12 13 14 21 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F A
23 eqid Base K = Base K
24 23 2 4 hlatjcl K HL S A F A S ˙ F Base K
25 18 20 22 24 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ F Base K
26 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T A
27 23 4 atbase T A T Base K
28 26 27 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T Base K
29 23 3 latmcl K Lat S ˙ F Base K T Base K S ˙ F ˙ T Base K
30 19 25 28 29 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ F ˙ T Base K
31 23 4 atbase F A F Base K
32 22 31 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F Base K
33 23 1 2 latlej2 K Lat S ˙ F ˙ T Base K F Base K F ˙ S ˙ F ˙ T ˙ F
34 19 30 32 33 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F ˙ S ˙ F ˙ T ˙ F
35 34 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F = G F ˙ S ˙ F ˙ T ˙ F
36 1 2 4 hlatlej2 K HL S A F A F ˙ S ˙ F
37 18 20 22 36 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F ˙ S ˙ F
38 23 1 2 3 4 atmod2i1 K HL F A S ˙ F Base K T Base K F ˙ S ˙ F S ˙ F ˙ T ˙ F = S ˙ F ˙ T ˙ F
39 18 22 25 28 37 38 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ F ˙ T ˙ F = S ˙ F ˙ T ˙ F
40 oveq2 F = G T ˙ F = T ˙ G
41 40 oveq2d F = G S ˙ F ˙ T ˙ F = S ˙ F ˙ T ˙ G
42 39 41 sylan9eq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F = G S ˙ F ˙ T ˙ F = S ˙ F ˙ T ˙ G
43 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T W H
44 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T Q A
45 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T T A ¬ T ˙ W
46 simp23r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S T
47 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T ¬ U ˙ S ˙ T
48 46 47 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S T ¬ U ˙ S ˙ T
49 1 2 3 4 5 6 7 8 cdleme12 K HL W H P A ¬ P ˙ W Q A P Q S A ¬ S ˙ W T A ¬ T ˙ W S T ¬ U ˙ S ˙ T S ˙ F ˙ T ˙ G = U
50 18 43 10 44 13 12 45 48 49 syl233anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T S ˙ F ˙ T ˙ G = U
51 50 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F = G S ˙ F ˙ T ˙ G = U
52 42 51 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F = G S ˙ F ˙ T ˙ F = U
53 35 52 breqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F = G F ˙ U
54 53 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F = G F ˙ U
55 hlatl K HL K AtLat
56 18 55 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T K AtLat
57 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T P A
58 simp12r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T ¬ P ˙ W
59 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
60 18 43 57 58 44 13 59 syl222anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T U A
61 1 4 atcmp K AtLat F A U A F ˙ U F = U
62 56 22 60 61 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F ˙ U F = U
63 54 62 sylibd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F = G F = U
64 63 necon3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F U F G
65 17 64 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q ¬ U ˙ S ˙ T F G