Metamath Proof Explorer


Theorem cdleme17d

Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th paragraph. We show, in their notation, f_s(p)=q. TODO FIX COMMENT. (Contributed by NM, 11-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B = Base K
cdlemef46.l ˙ = K
cdlemef46.j ˙ = join K
cdlemef46.m ˙ = meet K
cdlemef46.a A = Atoms K
cdlemef46.h H = LHyp K
cdlemef46.u U = P ˙ Q ˙ W
cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
Assertion cdleme17d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q

Proof

Step Hyp Ref Expression
1 cdlemef46.b B = Base K
2 cdlemef46.l ˙ = K
3 cdlemef46.j ˙ = join K
4 cdlemef46.m ˙ = meet K
5 cdlemef46.a A = Atoms K
6 cdlemef46.h H = LHyp K
7 cdlemef46.u U = P ˙ Q ˙ W
8 cdlemef46.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs46.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemef46.f F = x B if P Q ¬ x ˙ W ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = if s ˙ P ˙ Q ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E s / t D ˙ x ˙ W x
11 1 2 3 4 5 6 7 8 9 10 cdleme17d4 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P = Q F P = Q
12 1 2 3 4 5 6 7 8 9 10 cdleme17d3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q F P = Q
13 11 12 pm2.61dane K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F P = Q