Metamath Proof Explorer


Theorem cdleme17d1

Description: Part of proof of Lemma E in Crawley p. 114, first part of 4th paragraph. F , G represent f(s), f_s(p) respectively. We show, in their notation, f_s(p)=q. (Contributed by NM, 11-Oct-2012)

Ref Expression
Hypotheses cdleme17.l ˙ = K
cdleme17.j ˙ = join K
cdleme17.m ˙ = meet K
cdleme17.a A = Atoms K
cdleme17.h H = LHyp K
cdleme17.u U = P ˙ Q ˙ W
cdleme17.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme17.g G = P ˙ Q ˙ F ˙ P ˙ S ˙ W
Assertion cdleme17d1 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q G = Q

Proof

Step Hyp Ref Expression
1 cdleme17.l ˙ = K
2 cdleme17.j ˙ = join K
3 cdleme17.m ˙ = meet K
4 cdleme17.a A = Atoms K
5 cdleme17.h H = LHyp K
6 cdleme17.u U = P ˙ Q ˙ W
7 cdleme17.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme17.g G = P ˙ Q ˙ F ˙ P ˙ S ˙ W
9 eqid P ˙ S ˙ W = P ˙ S ˙ W
10 1 2 3 4 5 6 7 8 9 cdleme17a K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q G = P ˙ Q ˙ Q ˙ P ˙ S ˙ W
11 simp1l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q K HL
12 simp1r K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q W H
13 simp21l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P A
14 simp21r K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q ¬ P ˙ W
15 simp22 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q Q A
16 simp23l K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q S A
17 simp3 K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q ¬ S ˙ P ˙ Q
18 1 2 3 4 5 6 7 8 9 cdleme17c K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ P ˙ Q P ˙ Q ˙ Q ˙ P ˙ S ˙ W = Q
19 11 12 13 14 15 16 17 18 syl223anc K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q P ˙ Q ˙ Q ˙ P ˙ S ˙ W = Q
20 10 19 eqtrd K HL W H P A ¬ P ˙ W Q A S A ¬ S ˙ W ¬ S ˙ P ˙ Q G = Q