Metamath Proof Explorer


Theorem cdleme18a

Description: Part of proof of Lemma E in Crawley p. 114, 2nd sentence of 4th paragraph. F , G represent f(s), f_s(q) respectively. We show -. f_s(q) <_ w. (Contributed by NM, 12-Oct-2012)

Ref Expression
Hypotheses cdleme18.l ˙ = K
cdleme18.j ˙ = join K
cdleme18.m ˙ = meet K
cdleme18.a A = Atoms K
cdleme18.h H = LHyp K
cdleme18.u U = P ˙ Q ˙ W
cdleme18.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme18.g G = P ˙ Q ˙ F ˙ Q ˙ S ˙ W
Assertion cdleme18a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q ¬ G ˙ W

Proof

Step Hyp Ref Expression
1 cdleme18.l ˙ = K
2 cdleme18.j ˙ = join K
3 cdleme18.m ˙ = meet K
4 cdleme18.a A = Atoms K
5 cdleme18.h H = LHyp K
6 cdleme18.u U = P ˙ Q ˙ W
7 cdleme18.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme18.g G = P ˙ Q ˙ F ˙ Q ˙ S ˙ W
9 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q K HL W H
10 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P A ¬ P ˙ W
11 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q A ¬ Q ˙ W
12 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q S A ¬ S ˙ W
13 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P Q
14 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q K HL
15 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P A
16 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q A
17 1 2 4 hlatlej2 K HL P A Q A Q ˙ P ˙ Q
18 14 15 16 17 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q ˙ P ˙ Q
19 simp3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q ¬ S ˙ P ˙ Q
20 1 2 3 4 5 6 7 8 cdleme7 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q Q ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ G ˙ W
21 9 10 11 11 12 13 18 19 20 syl323anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q ¬ G ˙ W