Metamath Proof Explorer


Theorem cdleme18b

Description: Part of proof of Lemma E in Crawley p. 114, 2nd sentence of 4th paragraph. F , G represent f(s), f_s(q) respectively. We show -. f_s(q) =/= q. (Contributed by NM, 12-Oct-2012)

Ref Expression
Hypotheses cdleme18.l ˙ = K
cdleme18.j ˙ = join K
cdleme18.m ˙ = meet K
cdleme18.a A = Atoms K
cdleme18.h H = LHyp K
cdleme18.u U = P ˙ Q ˙ W
cdleme18.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme18.g G = P ˙ Q ˙ F ˙ Q ˙ S ˙ W
Assertion cdleme18b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q G Q

Proof

Step Hyp Ref Expression
1 cdleme18.l ˙ = K
2 cdleme18.j ˙ = join K
3 cdleme18.m ˙ = meet K
4 cdleme18.a A = Atoms K
5 cdleme18.h H = LHyp K
6 cdleme18.u U = P ˙ Q ˙ W
7 cdleme18.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme18.g G = P ˙ Q ˙ F ˙ Q ˙ S ˙ W
9 eqid Q = Q
10 oveq2 G = Q Q ˙ G = Q ˙ Q
11 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q K HL
12 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q A
13 2 4 hlatjidm K HL Q A Q ˙ Q = Q
14 11 12 13 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q ˙ Q = Q
15 10 14 sylan9eqr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q G = Q Q ˙ G = Q
16 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q K HL W H
17 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P A
18 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q A ¬ Q ˙ W
19 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q S A ¬ S ˙ W
20 1 2 4 hlatlej2 K HL P A Q A Q ˙ P ˙ Q
21 11 17 12 20 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q ˙ P ˙ Q
22 1 2 3 4 5 6 7 8 cdleme5 K HL W H P A Q A Q A ¬ Q ˙ W S A ¬ S ˙ W Q ˙ P ˙ Q Q ˙ G = P ˙ Q
23 16 17 12 18 19 21 22 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q ˙ G = P ˙ Q
24 23 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q G = Q Q ˙ G = P ˙ Q
25 15 24 eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q G = Q Q = P ˙ Q
26 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P Q
27 2 4 2atneat K HL P A Q A P Q ¬ P ˙ Q A
28 11 17 12 26 27 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q ¬ P ˙ Q A
29 nelne2 Q A ¬ P ˙ Q A Q P ˙ Q
30 29 necomd Q A ¬ P ˙ Q A P ˙ Q Q
31 12 28 30 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q P ˙ Q Q
32 31 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q G = Q P ˙ Q Q
33 25 32 eqnetrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q G = Q Q Q
34 33 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q G = Q Q Q
35 34 necon2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q Q = Q G Q
36 9 35 mpi K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q G Q