Metamath Proof Explorer


Theorem cdleme19b

Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114, 1st line. D , F , G represent s_2, f(s), f(t). In their notation, we prove that if r <_ s \/ t, then s_2 <_ f(s) \/ f(t). (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙ = K
cdleme19.j ˙ = join K
cdleme19.m ˙ = meet K
cdleme19.a A = Atoms K
cdleme19.h H = LHyp K
cdleme19.u U = P ˙ Q ˙ W
cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
cdleme19.d D = R ˙ S ˙ W
cdleme19.y Y = R ˙ T ˙ W
Assertion cdleme19b K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T D ˙ F ˙ G

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙ = K
2 cdleme19.j ˙ = join K
3 cdleme19.m ˙ = meet K
4 cdleme19.a A = Atoms K
5 cdleme19.h H = LHyp K
6 cdleme19.u U = P ˙ Q ˙ W
7 cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 cdleme19.d D = R ˙ S ˙ W
10 cdleme19.y Y = R ˙ T ˙ W
11 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T K HL
12 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T R A
13 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T S A
14 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T T A
15 simp33l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T R ˙ P ˙ Q
16 simp32l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T ¬ S ˙ P ˙ Q
17 simp33r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T R ˙ S ˙ T
18 1 2 3 4 5 6 7 8 9 10 cdleme19a K HL R A S A T A R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ S ˙ T D = S ˙ T ˙ W
19 11 12 13 14 15 16 17 18 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T D = S ˙ T ˙ W
20 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T K HL W H
21 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T P A ¬ P ˙ W
22 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T Q A ¬ Q ˙ W
23 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T S A ¬ S ˙ W
24 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T T A ¬ T ˙ W
25 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T P Q S T
26 simp32r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T ¬ T ˙ P ˙ Q
27 1 2 3 4 5 6 7 8 cdleme16 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q S ˙ T ˙ W = F ˙ G ˙ W
28 20 21 22 23 24 25 16 26 27 syl332anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T S ˙ T ˙ W = F ˙ G ˙ W
29 19 28 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T D = F ˙ G ˙ W
30 11 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T K Lat
31 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T W H
32 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T P A
33 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T Q A
34 eqid Base K = Base K
35 1 2 3 4 5 6 7 34 cdleme1b K HL W H P A Q A S A F Base K
36 11 31 32 33 13 35 syl23anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T F Base K
37 1 2 3 4 5 6 8 34 cdleme1b K HL W H P A Q A T A G Base K
38 11 31 32 33 14 37 syl23anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T G Base K
39 34 2 latjcl K Lat F Base K G Base K F ˙ G Base K
40 30 36 38 39 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T F ˙ G Base K
41 34 5 lhpbase W H W Base K
42 31 41 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T W Base K
43 34 1 3 latmle1 K Lat F ˙ G Base K W Base K F ˙ G ˙ W ˙ F ˙ G
44 30 40 42 43 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T F ˙ G ˙ W ˙ F ˙ G
45 29 44 eqbrtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ S ˙ T D ˙ F ˙ G