Metamath Proof Explorer


Theorem cdleme19c

Description: Part of proof of Lemma E in Crawley p. 113, 5th paragraph on p. 114, 1st line. D , F represent s_2, f(s). We prove f(s) =/= s_2. (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙ = K
cdleme19.j ˙ = join K
cdleme19.m ˙ = meet K
cdleme19.a A = Atoms K
cdleme19.h H = LHyp K
cdleme19.u U = P ˙ Q ˙ W
cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
cdleme19.d D = R ˙ S ˙ W
cdleme19.y Y = R ˙ T ˙ W
Assertion cdleme19c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q F D

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙ = K
2 cdleme19.j ˙ = join K
3 cdleme19.m ˙ = meet K
4 cdleme19.a A = Atoms K
5 cdleme19.h H = LHyp K
6 cdleme19.u U = P ˙ Q ˙ W
7 cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 cdleme19.d D = R ˙ S ˙ W
10 cdleme19.y Y = R ˙ T ˙ W
11 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q K HL
12 11 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q K Lat
13 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q R A
14 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q S A
15 eqid Base K = Base K
16 15 2 4 hlatjcl K HL R A S A R ˙ S Base K
17 11 13 14 16 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q R ˙ S Base K
18 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q W H
19 15 5 lhpbase W H W Base K
20 18 19 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q W Base K
21 15 1 3 latmle2 K Lat R ˙ S Base K W Base K R ˙ S ˙ W ˙ W
22 12 17 20 21 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q R ˙ S ˙ W ˙ W
23 9 22 eqbrtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q D ˙ W
24 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q P Q
25 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q ¬ S ˙ P ˙ Q
26 24 25 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q P Q ¬ S ˙ P ˙ Q
27 1 2 3 4 5 6 7 cdleme3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q ¬ F ˙ W
28 26 27 syld3an3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q ¬ F ˙ W
29 nbrne2 D ˙ W ¬ F ˙ W D F
30 23 28 29 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q D F
31 30 necomd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W R A P Q ¬ S ˙ P ˙ Q F D