Metamath Proof Explorer


Theorem cdleme1b

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma showing F is a lattice element. F represents their f(r). (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙ = K
cdleme1.j ˙ = join K
cdleme1.m ˙ = meet K
cdleme1.a A = Atoms K
cdleme1.h H = LHyp K
cdleme1.u U = P ˙ Q ˙ W
cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
cdleme1.b B = Base K
Assertion cdleme1b K HL W H P A Q A R A F B

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙ = K
2 cdleme1.j ˙ = join K
3 cdleme1.m ˙ = meet K
4 cdleme1.a A = Atoms K
5 cdleme1.h H = LHyp K
6 cdleme1.u U = P ˙ Q ˙ W
7 cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 cdleme1.b B = Base K
9 hllat K HL K Lat
10 9 ad2antrr K HL W H P A Q A R A K Lat
11 simpr3 K HL W H P A Q A R A R A
12 8 4 atbase R A R B
13 11 12 syl K HL W H P A Q A R A R B
14 1 2 3 4 5 6 8 cdleme0aa K HL W H P A Q A U B
15 14 3adant3r3 K HL W H P A Q A R A U B
16 8 2 latjcl K Lat R B U B R ˙ U B
17 10 13 15 16 syl3anc K HL W H P A Q A R A R ˙ U B
18 simpr2 K HL W H P A Q A R A Q A
19 8 4 atbase Q A Q B
20 18 19 syl K HL W H P A Q A R A Q B
21 simpr1 K HL W H P A Q A R A P A
22 8 4 atbase P A P B
23 21 22 syl K HL W H P A Q A R A P B
24 8 2 latjcl K Lat P B R B P ˙ R B
25 10 23 13 24 syl3anc K HL W H P A Q A R A P ˙ R B
26 8 5 lhpbase W H W B
27 26 ad2antlr K HL W H P A Q A R A W B
28 8 3 latmcl K Lat P ˙ R B W B P ˙ R ˙ W B
29 10 25 27 28 syl3anc K HL W H P A Q A R A P ˙ R ˙ W B
30 8 2 latjcl K Lat Q B P ˙ R ˙ W B Q ˙ P ˙ R ˙ W B
31 10 20 29 30 syl3anc K HL W H P A Q A R A Q ˙ P ˙ R ˙ W B
32 8 3 latmcl K Lat R ˙ U B Q ˙ P ˙ R ˙ W B R ˙ U ˙ Q ˙ P ˙ R ˙ W B
33 10 17 31 32 syl3anc K HL W H P A Q A R A R ˙ U ˙ Q ˙ P ˙ R ˙ W B
34 7 33 eqeltrid K HL W H P A Q A R A F B