Metamath Proof Explorer


Theorem cdleme20f

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, 4th line. D , F , Y , G represent s_2, f(s), t_2, f(t). We show and are axially perspective. (Contributed by NM, 17-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙ = K
cdleme19.j ˙ = join K
cdleme19.m ˙ = meet K
cdleme19.a A = Atoms K
cdleme19.h H = LHyp K
cdleme19.u U = P ˙ Q ˙ W
cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
cdleme19.d D = R ˙ S ˙ W
cdleme19.y Y = R ˙ T ˙ W
cdleme20.v V = S ˙ T ˙ W
Assertion cdleme20f K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q F ˙ D ˙ G ˙ Y ˙ D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙ = K
2 cdleme19.j ˙ = join K
3 cdleme19.m ˙ = meet K
4 cdleme19.a A = Atoms K
5 cdleme19.h H = LHyp K
6 cdleme19.u U = P ˙ Q ˙ W
7 cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 cdleme19.d D = R ˙ S ˙ W
10 cdleme19.y Y = R ˙ T ˙ W
11 cdleme20.v V = S ˙ T ˙ W
12 1 2 3 4 5 6 7 8 9 10 11 cdleme20e K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q F ˙ G ˙ D ˙ Y ˙ S ˙ T
13 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q K HL
14 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q K HL W H
15 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q P A ¬ P ˙ W
16 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q Q A ¬ Q ˙ W
17 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q S A ¬ S ˙ W
18 simp31l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q P Q
19 simp32l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q
20 1 2 3 4 5 6 7 cdleme3fa K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W P Q ¬ S ˙ P ˙ Q F A
21 14 15 16 17 18 19 20 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q F A
22 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q W H
23 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q S A
24 simp21r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ S ˙ W
25 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R A
26 simp33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q R ˙ P ˙ Q
27 1 2 3 4 5 9 cdlemeda K HL W H S A ¬ S ˙ W R A R ˙ P ˙ Q ¬ S ˙ P ˙ Q D A
28 13 22 23 24 25 26 19 27 syl223anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q D A
29 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q T A ¬ T ˙ W
30 simp32r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ T ˙ P ˙ Q
31 1 2 3 4 5 6 8 cdleme3fa K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W T A ¬ T ˙ W P Q ¬ T ˙ P ˙ Q G A
32 14 15 16 29 18 30 31 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q G A
33 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q T A
34 simp22r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ T ˙ W
35 1 2 3 4 5 10 cdlemeda K HL W H T A ¬ T ˙ W R A R ˙ P ˙ Q ¬ T ˙ P ˙ Q Y A
36 13 22 33 34 25 26 30 35 syl223anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q Y A
37 1 2 3 4 dalaw K HL F A D A S A G A Y A T A F ˙ G ˙ D ˙ Y ˙ S ˙ T F ˙ D ˙ G ˙ Y ˙ D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G
38 13 21 28 23 32 36 33 37 syl133anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q F ˙ G ˙ D ˙ Y ˙ S ˙ T F ˙ D ˙ G ˙ Y ˙ D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G
39 12 38 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q F ˙ D ˙ G ˙ Y ˙ D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G