Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme19.l |
|
2 |
|
cdleme19.j |
|
3 |
|
cdleme19.m |
|
4 |
|
cdleme19.a |
|
5 |
|
cdleme19.h |
|
6 |
|
cdleme19.u |
|
7 |
|
cdleme19.f |
|
8 |
|
cdleme19.g |
|
9 |
|
cdleme19.d |
|
10 |
|
cdleme19.y |
|
11 |
|
cdleme20.v |
|
12 |
|
simp11l |
|
13 |
|
simp11r |
|
14 |
|
simp21l |
|
15 |
|
simp21r |
|
16 |
|
simp23l |
|
17 |
|
simp33 |
|
18 |
|
simp32l |
|
19 |
1 2 3 4 5 9
|
cdlemeda |
|
20 |
12 13 14 15 16 17 18 19
|
syl223anc |
|
21 |
2 4
|
hlatjcom |
|
22 |
12 20 14 21
|
syl3anc |
|
23 |
1 2 3 4 5 9
|
cdleme10 |
|
24 |
12 13 16 14 15 23
|
syl212anc |
|
25 |
22 24
|
eqtrd |
|
26 |
|
simp22l |
|
27 |
|
simp22r |
|
28 |
|
simp32r |
|
29 |
1 2 3 4 5 10
|
cdlemeda |
|
30 |
12 13 26 27 16 17 28 29
|
syl223anc |
|
31 |
2 4
|
hlatjcom |
|
32 |
12 30 26 31
|
syl3anc |
|
33 |
1 2 3 4 5 10
|
cdleme10 |
|
34 |
12 13 16 26 27 33
|
syl212anc |
|
35 |
32 34
|
eqtrd |
|
36 |
25 35
|
oveq12d |
|
37 |
|
simp12l |
|
38 |
|
simp13l |
|
39 |
|
simp21 |
|
40 |
1 2 3 4 5 6 7
|
cdleme1 |
|
41 |
12 13 37 38 39 40
|
syl23anc |
|
42 |
|
simp22 |
|
43 |
1 2 3 4 5 6 8
|
cdleme1 |
|
44 |
12 13 37 38 42 43
|
syl23anc |
|
45 |
41 44
|
oveq12d |
|
46 |
36 45
|
oveq12d |
|