Metamath Proof Explorer


Theorem cdleme20i

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, antepenultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t). We show (f(s) \/ s_2) /\ (f(t) \/ t_2) <_ p \/ q. (Contributed by NM, 18-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙ = K
cdleme19.j ˙ = join K
cdleme19.m ˙ = meet K
cdleme19.a A = Atoms K
cdleme19.h H = LHyp K
cdleme19.u U = P ˙ Q ˙ W
cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
cdleme19.d D = R ˙ S ˙ W
cdleme19.y Y = R ˙ T ˙ W
cdleme20.v V = S ˙ T ˙ W
Assertion cdleme20i K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T F ˙ D ˙ G ˙ Y ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙ = K
2 cdleme19.j ˙ = join K
3 cdleme19.m ˙ = meet K
4 cdleme19.a A = Atoms K
5 cdleme19.h H = LHyp K
6 cdleme19.u U = P ˙ Q ˙ W
7 cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 cdleme19.d D = R ˙ S ˙ W
10 cdleme19.y Y = R ˙ T ˙ W
11 cdleme20.v V = S ˙ T ˙ W
12 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
13 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T S A ¬ S ˙ W
14 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T T A ¬ T ˙ W
15 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T R A ¬ R ˙ W
16 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T P Q S T
17 simp321 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T ¬ S ˙ P ˙ Q
18 simp322 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T ¬ T ˙ P ˙ Q
19 17 18 jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q
20 simp323 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T R ˙ P ˙ Q
21 16 19 20 3jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q
22 1 2 3 4 5 6 7 8 9 10 11 cdleme20f K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q F ˙ D ˙ G ˙ Y ˙ D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G
23 12 13 14 15 21 22 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T F ˙ D ˙ G ˙ Y ˙ D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G
24 1 2 3 4 5 6 7 8 9 10 11 cdleme20h K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T S ˙ R ˙ T ˙ R ˙ S ˙ U ˙ T ˙ U = R ˙ U
25 1 2 3 4 5 6 7 8 9 10 11 cdleme20g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W S A ¬ S ˙ W T A ¬ T ˙ W R A ¬ R ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G = S ˙ R ˙ T ˙ R ˙ S ˙ U ˙ T ˙ U
26 12 13 14 15 21 25 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G = S ˙ R ˙ T ˙ R ˙ S ˙ U ˙ T ˙ U
27 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T K HL W H
28 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T P A
29 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T Q A
30 1 2 3 4 5 6 cdleme4 K HL W H P A Q A R A ¬ R ˙ W R ˙ P ˙ Q P ˙ Q = R ˙ U
31 27 28 29 15 20 30 syl131anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T P ˙ Q = R ˙ U
32 24 26 31 3eqtr4d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T D ˙ S ˙ Y ˙ T ˙ S ˙ F ˙ T ˙ G = P ˙ Q
33 23 32 breqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W S A ¬ S ˙ W T A ¬ T ˙ W P Q S T ¬ S ˙ P ˙ Q ¬ T ˙ P ˙ Q R ˙ P ˙ Q ¬ R ˙ S ˙ T ¬ U ˙ S ˙ T F ˙ D ˙ G ˙ Y ˙ P ˙ Q