Metamath Proof Explorer


Theorem cdleme20k

Description: Part of proof of Lemma E in Crawley p. 113, last paragraph on p. 114, antepenultimate line. D , F , Y , G represent s_2, f(s), t_2, f(t). (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdleme19.l ˙ = K
cdleme19.j ˙ = join K
cdleme19.m ˙ = meet K
cdleme19.a A = Atoms K
cdleme19.h H = LHyp K
cdleme19.u U = P ˙ Q ˙ W
cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
cdleme19.d D = R ˙ S ˙ W
cdleme19.y Y = R ˙ T ˙ W
cdleme20.v V = S ˙ T ˙ W
Assertion cdleme20k K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q F ˙ D P ˙ Q

Proof

Step Hyp Ref Expression
1 cdleme19.l ˙ = K
2 cdleme19.j ˙ = join K
3 cdleme19.m ˙ = meet K
4 cdleme19.a A = Atoms K
5 cdleme19.h H = LHyp K
6 cdleme19.u U = P ˙ Q ˙ W
7 cdleme19.f F = S ˙ U ˙ Q ˙ P ˙ S ˙ W
8 cdleme19.g G = T ˙ U ˙ Q ˙ P ˙ T ˙ W
9 cdleme19.d D = R ˙ S ˙ W
10 cdleme19.y Y = R ˙ T ˙ W
11 cdleme20.v V = S ˙ T ˙ W
12 simp11 K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q K HL W H
13 simp12 K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q P A
14 simp13 K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q Q A
15 simp2r K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q R A ¬ R ˙ W
16 simp2l K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q S A ¬ S ˙ W
17 simp3r K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q R ˙ P ˙ Q
18 simp3l K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q ¬ S ˙ P ˙ Q
19 1 2 3 4 5 9 cdlemednpq K HL W H P A Q A R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q ¬ D ˙ P ˙ Q
20 12 13 14 15 16 17 18 19 syl133anc K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q ¬ D ˙ P ˙ Q
21 simp11l K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q K HL
22 21 hllatd K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q K Lat
23 simp11r K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q W H
24 simp2ll K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q S A
25 eqid Base K = Base K
26 1 2 3 4 5 6 7 25 cdleme1b K HL W H P A Q A S A F Base K
27 21 23 13 14 24 26 syl23anc K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q F Base K
28 simp2rl K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q R A
29 1 2 3 4 5 9 25 cdlemedb K HL W H R A S A D Base K
30 21 23 28 24 29 syl22anc K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q D Base K
31 25 1 2 latlej2 K Lat F Base K D Base K D ˙ F ˙ D
32 22 27 30 31 syl3anc K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q D ˙ F ˙ D
33 breq2 F ˙ D = P ˙ Q D ˙ F ˙ D D ˙ P ˙ Q
34 32 33 syl5ibcom K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q F ˙ D = P ˙ Q D ˙ P ˙ Q
35 34 necon3bd K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q ¬ D ˙ P ˙ Q F ˙ D P ˙ Q
36 20 35 mpd K HL W H P A Q A S A ¬ S ˙ W R A ¬ R ˙ W ¬ S ˙ P ˙ Q R ˙ P ˙ Q F ˙ D P ˙ Q