Metamath Proof Explorer


Theorem cdleme20y

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 17-Nov-2012) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses cdleme20z.l ˙ = K
cdleme20z.j ˙ = join K
cdleme20z.m ˙ = meet K
cdleme20z.a A = Atoms K
Assertion cdleme20y K HL R A S A T A S T ¬ R ˙ S ˙ T S ˙ R ˙ T ˙ R = R

Proof

Step Hyp Ref Expression
1 cdleme20z.l ˙ = K
2 cdleme20z.j ˙ = join K
3 cdleme20z.m ˙ = meet K
4 cdleme20z.a A = Atoms K
5 simp1 K HL R A S A T A S T ¬ R ˙ S ˙ T K HL
6 simp22 K HL R A S A T A S T ¬ R ˙ S ˙ T S A
7 simp23 K HL R A S A T A S T ¬ R ˙ S ˙ T T A
8 simp21 K HL R A S A T A S T ¬ R ˙ S ˙ T R A
9 simp3 K HL R A S A T A S T ¬ R ˙ S ˙ T S T ¬ R ˙ S ˙ T
10 1 2 3 4 2llnma2rN K HL S A T A R A S T ¬ R ˙ S ˙ T S ˙ R ˙ T ˙ R = R
11 5 6 7 8 9 10 syl131anc K HL R A S A T A S T ¬ R ˙ S ˙ T S ˙ R ˙ T ˙ R = R