Metamath Proof Explorer


Theorem cdleme20zN

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 17-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme20z.l ˙ = K
cdleme20z.j ˙ = join K
cdleme20z.m ˙ = meet K
cdleme20z.a A = Atoms K
Assertion cdleme20zN K HL R A S A T A S T ¬ R ˙ S ˙ T S ˙ R ˙ T = 0. K

Proof

Step Hyp Ref Expression
1 cdleme20z.l ˙ = K
2 cdleme20z.j ˙ = join K
3 cdleme20z.m ˙ = meet K
4 cdleme20z.a A = Atoms K
5 hllat K HL K Lat
6 5 3ad2ant1 K HL R A S A T A S T ¬ R ˙ S ˙ T K Lat
7 simp1 K HL R A S A T A S T ¬ R ˙ S ˙ T K HL
8 simp22 K HL R A S A T A S T ¬ R ˙ S ˙ T S A
9 simp21 K HL R A S A T A S T ¬ R ˙ S ˙ T R A
10 eqid Base K = Base K
11 10 2 4 hlatjcl K HL S A R A S ˙ R Base K
12 7 8 9 11 syl3anc K HL R A S A T A S T ¬ R ˙ S ˙ T S ˙ R Base K
13 simp23 K HL R A S A T A S T ¬ R ˙ S ˙ T T A
14 10 4 atbase T A T Base K
15 13 14 syl K HL R A S A T A S T ¬ R ˙ S ˙ T T Base K
16 10 3 latmcom K Lat S ˙ R Base K T Base K S ˙ R ˙ T = T ˙ S ˙ R
17 6 12 15 16 syl3anc K HL R A S A T A S T ¬ R ˙ S ˙ T S ˙ R ˙ T = T ˙ S ˙ R
18 simp3r K HL R A S A T A S T ¬ R ˙ S ˙ T ¬ R ˙ S ˙ T
19 hlcvl K HL K CvLat
20 19 3ad2ant1 K HL R A S A T A S T ¬ R ˙ S ˙ T K CvLat
21 simp3l K HL R A S A T A S T ¬ R ˙ S ˙ T S T
22 21 necomd K HL R A S A T A S T ¬ R ˙ S ˙ T T S
23 1 2 4 cvlatexch1 K CvLat T A R A S A T S T ˙ S ˙ R R ˙ S ˙ T
24 20 13 9 8 22 23 syl131anc K HL R A S A T A S T ¬ R ˙ S ˙ T T ˙ S ˙ R R ˙ S ˙ T
25 18 24 mtod K HL R A S A T A S T ¬ R ˙ S ˙ T ¬ T ˙ S ˙ R
26 hlatl K HL K AtLat
27 26 3ad2ant1 K HL R A S A T A S T ¬ R ˙ S ˙ T K AtLat
28 eqid 0. K = 0. K
29 10 1 3 28 4 atnle K AtLat T A S ˙ R Base K ¬ T ˙ S ˙ R T ˙ S ˙ R = 0. K
30 27 13 12 29 syl3anc K HL R A S A T A S T ¬ R ˙ S ˙ T ¬ T ˙ S ˙ R T ˙ S ˙ R = 0. K
31 25 30 mpbid K HL R A S A T A S T ¬ R ˙ S ˙ T T ˙ S ˙ R = 0. K
32 17 31 eqtrd K HL R A S A T A S T ¬ R ˙ S ˙ T S ˙ R ˙ T = 0. K