Metamath Proof Explorer


Theorem cdleme21a

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 28-Nov-2012)

Ref Expression
Hypotheses cdleme21a.l ˙ = K
cdleme21a.j ˙ = join K
cdleme21a.a A = Atoms K
Assertion cdleme21a K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z S z

Proof

Step Hyp Ref Expression
1 cdleme21a.l ˙ = K
2 cdleme21a.j ˙ = join K
3 cdleme21a.a A = Atoms K
4 simp11 K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z K HL
5 hlcvl K HL K CvLat
6 4 5 syl K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z K CvLat
7 simp12 K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P A
8 simp2l K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z S A
9 simp3l K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z z A
10 simp13 K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z Q A
11 simp2r K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ S ˙ P ˙ Q
12 1 2 3 atnlej1 K HL S A P A Q A ¬ S ˙ P ˙ Q S P
13 12 necomd K HL S A P A Q A ¬ S ˙ P ˙ Q P S
14 4 8 7 10 11 13 syl131anc K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P S
15 simp3r K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ z = S ˙ z
16 3 2 cvlsupr6 K CvLat P A S A z A P S P ˙ z = S ˙ z z S
17 16 necomd K CvLat P A S A z A P S P ˙ z = S ˙ z S z
18 6 7 8 9 14 15 17 syl132anc K HL P A Q A S A ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z S z