Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme21at
Next ⟩
cdleme21ct
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme21at
Description:
Part of proof of Lemma E in
Crawley
p. 115.
(Contributed by
NM
, 29-Nov-2012)
Ref
Expression
Hypotheses
cdleme21.l
⊢
≤
˙
=
≤
K
cdleme21.j
⊢
∨
˙
=
join
⁡
K
cdleme21.m
⊢
∧
˙
=
meet
⁡
K
cdleme21.a
⊢
A
=
Atoms
⁡
K
cdleme21.h
⊢
H
=
LHyp
⁡
K
cdleme21.u
⊢
U
=
P
∨
˙
Q
∧
˙
W
Assertion
cdleme21at
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
S
∈
A
∧
P
≠
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∧
U
≤
˙
S
∨
˙
T
∧
z
∈
A
∧
P
∨
˙
z
=
S
∨
˙
z
→
T
≠
z
Proof
Step
Hyp
Ref
Expression
1
cdleme21.l
⊢
≤
˙
=
≤
K
2
cdleme21.j
⊢
∨
˙
=
join
⁡
K
3
cdleme21.m
⊢
∧
˙
=
meet
⁡
K
4
cdleme21.a
⊢
A
=
Atoms
⁡
K
5
cdleme21.h
⊢
H
=
LHyp
⁡
K
6
cdleme21.u
⊢
U
=
P
∨
˙
Q
∧
˙
W
7
1
2
3
4
5
6
cdleme21c
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
S
∈
A
∧
P
≠
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∧
z
∈
A
∧
P
∨
˙
z
=
S
∨
˙
z
→
¬
U
≤
˙
S
∨
˙
z
8
7
3adant2r
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
S
∈
A
∧
P
≠
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∧
U
≤
˙
S
∨
˙
T
∧
z
∈
A
∧
P
∨
˙
z
=
S
∨
˙
z
→
¬
U
≤
˙
S
∨
˙
z
9
simp2r
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
S
∈
A
∧
P
≠
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∧
U
≤
˙
S
∨
˙
T
∧
z
∈
A
∧
P
∨
˙
z
=
S
∨
˙
z
→
U
≤
˙
S
∨
˙
T
10
oveq2
⊢
T
=
z
→
S
∨
˙
T
=
S
∨
˙
z
11
10
breq2d
⊢
T
=
z
→
U
≤
˙
S
∨
˙
T
↔
U
≤
˙
S
∨
˙
z
12
9
11
syl5ibcom
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
S
∈
A
∧
P
≠
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∧
U
≤
˙
S
∨
˙
T
∧
z
∈
A
∧
P
∨
˙
z
=
S
∨
˙
z
→
T
=
z
→
U
≤
˙
S
∨
˙
z
13
12
necon3bd
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
S
∈
A
∧
P
≠
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∧
U
≤
˙
S
∨
˙
T
∧
z
∈
A
∧
P
∨
˙
z
=
S
∨
˙
z
→
¬
U
≤
˙
S
∨
˙
z
→
T
≠
z
14
8
13
mpd
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
S
∈
A
∧
P
≠
Q
∧
¬
S
≤
˙
P
∨
˙
Q
∧
U
≤
˙
S
∨
˙
T
∧
z
∈
A
∧
P
∨
˙
z
=
S
∨
˙
z
→
T
≠
z