Metamath Proof Explorer


Theorem cdleme21at

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 29-Nov-2012)

Ref Expression
Hypotheses cdleme21.l ˙ = K
cdleme21.j ˙ = join K
cdleme21.m ˙ = meet K
cdleme21.a A = Atoms K
cdleme21.h H = LHyp K
cdleme21.u U = P ˙ Q ˙ W
Assertion cdleme21at K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q U ˙ S ˙ T z A P ˙ z = S ˙ z T z

Proof

Step Hyp Ref Expression
1 cdleme21.l ˙ = K
2 cdleme21.j ˙ = join K
3 cdleme21.m ˙ = meet K
4 cdleme21.a A = Atoms K
5 cdleme21.h H = LHyp K
6 cdleme21.u U = P ˙ Q ˙ W
7 1 2 3 4 5 6 cdleme21c K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ U ˙ S ˙ z
8 7 3adant2r K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q U ˙ S ˙ T z A P ˙ z = S ˙ z ¬ U ˙ S ˙ z
9 simp2r K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q U ˙ S ˙ T z A P ˙ z = S ˙ z U ˙ S ˙ T
10 oveq2 T = z S ˙ T = S ˙ z
11 10 breq2d T = z U ˙ S ˙ T U ˙ S ˙ z
12 9 11 syl5ibcom K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q U ˙ S ˙ T z A P ˙ z = S ˙ z T = z U ˙ S ˙ z
13 12 necon3bd K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q U ˙ S ˙ T z A P ˙ z = S ˙ z ¬ U ˙ S ˙ z T z
14 8 13 mpd K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q U ˙ S ˙ T z A P ˙ z = S ˙ z T z