Metamath Proof Explorer


Theorem cdleme21b

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 28-Nov-2012)

Ref Expression
Hypotheses cdleme21a.l ˙ = K
cdleme21a.j ˙ = join K
cdleme21a.a A = Atoms K
Assertion cdleme21b K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ z ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdleme21a.l ˙ = K
2 cdleme21a.j ˙ = join K
3 cdleme21a.a A = Atoms K
4 simp23 K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ S ˙ P ˙ Q
5 simp11 K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z K HL
6 hlcvl K HL K CvLat
7 5 6 syl K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z K CvLat
8 simp3l K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z z A
9 simp13 K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z Q A
10 simp12 K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P A
11 simp21 K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z S A
12 1 2 3 atnlej1 K HL S A P A Q A ¬ S ˙ P ˙ Q S P
13 12 necomd K HL S A P A Q A ¬ S ˙ P ˙ Q P S
14 5 11 10 9 4 13 syl131anc K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P S
15 simp3r K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ z = S ˙ z
16 3 2 cvlsupr5 K CvLat P A S A z A P S P ˙ z = S ˙ z z P
17 7 10 11 8 14 15 16 syl132anc K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z z P
18 1 2 3 cvlatexch1 K CvLat z A Q A P A z P z ˙ P ˙ Q Q ˙ P ˙ z
19 7 8 9 10 17 18 syl131anc K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z z ˙ P ˙ Q Q ˙ P ˙ z
20 3 2 cvlsupr8 K CvLat P A S A z A P S P ˙ z = S ˙ z P ˙ S = P ˙ z
21 7 10 11 8 14 15 20 syl132anc K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ S = P ˙ z
22 21 breq2d K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z Q ˙ P ˙ S Q ˙ P ˙ z
23 19 22 sylibrd K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z z ˙ P ˙ Q Q ˙ P ˙ S
24 simp22 K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P Q
25 24 necomd K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z Q P
26 1 2 3 cvlatexch1 K CvLat Q A S A P A Q P Q ˙ P ˙ S S ˙ P ˙ Q
27 7 9 11 10 25 26 syl131anc K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z Q ˙ P ˙ S S ˙ P ˙ Q
28 23 27 syld K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z z ˙ P ˙ Q S ˙ P ˙ Q
29 4 28 mtod K HL P A Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ z ˙ P ˙ Q