Metamath Proof Explorer


Theorem cdleme21c

Description: Part of proof of Lemma E in Crawley p. 115. (Contributed by NM, 28-Nov-2012)

Ref Expression
Hypotheses cdleme21.l ˙ = K
cdleme21.j ˙ = join K
cdleme21.m ˙ = meet K
cdleme21.a A = Atoms K
cdleme21.h H = LHyp K
cdleme21.u U = P ˙ Q ˙ W
Assertion cdleme21c K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ U ˙ S ˙ z

Proof

Step Hyp Ref Expression
1 cdleme21.l ˙ = K
2 cdleme21.j ˙ = join K
3 cdleme21.m ˙ = meet K
4 cdleme21.a A = Atoms K
5 cdleme21.h H = LHyp K
6 cdleme21.u U = P ˙ Q ˙ W
7 simp23 K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ S ˙ P ˙ Q
8 simp11l K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z K HL
9 hlcvl K HL K CvLat
10 8 9 syl K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z K CvLat
11 simp12l K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P A
12 simp21 K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z S A
13 simp3l K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z z A
14 simp13 K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z Q A
15 1 2 4 atnlej1 K HL S A P A Q A ¬ S ˙ P ˙ Q S P
16 15 necomd K HL S A P A Q A ¬ S ˙ P ˙ Q P S
17 8 12 11 14 7 16 syl131anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P S
18 simp3r K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ z = S ˙ z
19 4 2 cvlsupr7 K CvLat P A S A z A P S P ˙ z = S ˙ z P ˙ S = z ˙ S
20 10 11 12 13 17 18 19 syl132anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ S = z ˙ S
21 2 4 hlatjcom K HL z A S A z ˙ S = S ˙ z
22 8 13 12 21 syl3anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z z ˙ S = S ˙ z
23 20 22 eqtrd K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ S = S ˙ z
24 23 breq2d K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U ˙ P ˙ S U ˙ S ˙ z
25 simp11r K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z W H
26 simp12r K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ P ˙ W
27 simp22 K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P Q
28 1 2 3 4 5 6 cdleme0a K HL W H P A ¬ P ˙ W Q A P Q U A
29 8 25 11 26 14 27 28 syl222anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U A
30 8 hllatd K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z K Lat
31 eqid Base K = Base K
32 31 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
33 8 11 14 32 syl3anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ Q Base K
34 31 5 lhpbase W H W Base K
35 25 34 syl K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z W Base K
36 31 1 3 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
37 30 33 35 36 syl3anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ Q ˙ W ˙ W
38 6 37 eqbrtrid K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U ˙ W
39 nbrne2 U ˙ W ¬ P ˙ W U P
40 38 26 39 syl2anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U P
41 1 2 4 cvlatexch1 K CvLat U A S A P A U P U ˙ P ˙ S S ˙ P ˙ U
42 10 29 12 11 40 41 syl131anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U ˙ P ˙ S S ˙ P ˙ U
43 1 2 4 hlatlej1 K HL P A Q A P ˙ P ˙ Q
44 8 11 14 43 syl3anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ P ˙ Q
45 1 2 3 4 5 6 cdlemeulpq K HL W H P A Q A U ˙ P ˙ Q
46 8 25 11 14 45 syl22anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U ˙ P ˙ Q
47 31 4 atbase P A P Base K
48 11 47 syl K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P Base K
49 31 4 atbase U A U Base K
50 29 49 syl K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U Base K
51 31 1 2 latjle12 K Lat P Base K U Base K P ˙ Q Base K P ˙ P ˙ Q U ˙ P ˙ Q P ˙ U ˙ P ˙ Q
52 30 48 50 33 51 syl13anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ P ˙ Q U ˙ P ˙ Q P ˙ U ˙ P ˙ Q
53 44 46 52 mpbi2and K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ U ˙ P ˙ Q
54 31 4 atbase S A S Base K
55 12 54 syl K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z S Base K
56 31 2 4 hlatjcl K HL P A U A P ˙ U Base K
57 8 11 29 56 syl3anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z P ˙ U Base K
58 31 1 lattr K Lat S Base K P ˙ U Base K P ˙ Q Base K S ˙ P ˙ U P ˙ U ˙ P ˙ Q S ˙ P ˙ Q
59 30 55 57 33 58 syl13anc K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z S ˙ P ˙ U P ˙ U ˙ P ˙ Q S ˙ P ˙ Q
60 53 59 mpan2d K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z S ˙ P ˙ U S ˙ P ˙ Q
61 42 60 syld K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U ˙ P ˙ S S ˙ P ˙ Q
62 24 61 sylbird K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z U ˙ S ˙ z S ˙ P ˙ Q
63 7 62 mtod K HL W H P A ¬ P ˙ W Q A S A P Q ¬ S ˙ P ˙ Q z A P ˙ z = S ˙ z ¬ U ˙ S ˙ z