Metamath Proof Explorer


Theorem cdleme22a

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 3rd line on p. 115. Show that t \/ v = p \/ q implies v = u. (Contributed by NM, 30-Nov-2012)

Ref Expression
Hypotheses cdleme22.l ˙ = K
cdleme22.j ˙ = join K
cdleme22.m ˙ = meet K
cdleme22.a A = Atoms K
cdleme22.h H = LHyp K
cdleme22.u U = P ˙ Q ˙ W
Assertion cdleme22a K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q V = U

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙ = K
2 cdleme22.j ˙ = join K
3 cdleme22.m ˙ = meet K
4 cdleme22.a A = Atoms K
5 cdleme22.h H = LHyp K
6 cdleme22.u U = P ˙ Q ˙ W
7 simp1 K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q K HL W H
8 simp21 K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q P A ¬ P ˙ W
9 simp22 K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q Q A
10 simp32 K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q P Q
11 simp31l K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q V A
12 simp31r K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q V ˙ W
13 simp1l K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q K HL
14 simp23 K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q T A
15 1 2 4 hlatlej2 K HL T A V A V ˙ T ˙ V
16 13 14 11 15 syl3anc K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q V ˙ T ˙ V
17 simp33 K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q T ˙ V = P ˙ Q
18 16 17 breqtrd K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q V ˙ P ˙ Q
19 1 2 3 4 5 6 cdleme22aa K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V = U
20 7 8 9 10 11 12 18 19 syl133anc K HL W H P A ¬ P ˙ W Q A T A V A V ˙ W P Q T ˙ V = P ˙ Q V = U