Metamath Proof Explorer


Theorem cdleme22aa

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 3rd line on p. 115. Show that t \/ v = p \/ q implies v = u. (Contributed by NM, 2-Dec-2012)

Ref Expression
Hypotheses cdleme22.l ˙ = K
cdleme22.j ˙ = join K
cdleme22.m ˙ = meet K
cdleme22.a A = Atoms K
cdleme22.h H = LHyp K
cdleme22.u U = P ˙ Q ˙ W
Assertion cdleme22aa K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V = U

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙ = K
2 cdleme22.j ˙ = join K
3 cdleme22.m ˙ = meet K
4 cdleme22.a A = Atoms K
5 cdleme22.h H = LHyp K
6 cdleme22.u U = P ˙ Q ˙ W
7 simp33 K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V ˙ P ˙ Q
8 simp32 K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V ˙ W
9 simp1l K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q K HL
10 9 hllatd K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q K Lat
11 simp31 K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V A
12 eqid Base K = Base K
13 12 4 atbase V A V Base K
14 11 13 syl K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V Base K
15 simp21l K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q P A
16 simp22 K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q Q A
17 12 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
18 9 15 16 17 syl3anc K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q P ˙ Q Base K
19 simp1r K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q W H
20 12 5 lhpbase W H W Base K
21 19 20 syl K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q W Base K
22 12 1 3 latlem12 K Lat V Base K P ˙ Q Base K W Base K V ˙ P ˙ Q V ˙ W V ˙ P ˙ Q ˙ W
23 10 14 18 21 22 syl13anc K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V ˙ P ˙ Q V ˙ W V ˙ P ˙ Q ˙ W
24 7 8 23 mpbi2and K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V ˙ P ˙ Q ˙ W
25 24 6 breqtrrdi K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V ˙ U
26 hlatl K HL K AtLat
27 9 26 syl K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q K AtLat
28 simp21r K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q ¬ P ˙ W
29 simp23 K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q P Q
30 1 2 3 4 5 6 cdleme0a K HL W H P A ¬ P ˙ W Q A P Q U A
31 9 19 15 28 16 29 30 syl222anc K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q U A
32 1 4 atcmp K AtLat V A U A V ˙ U V = U
33 27 11 31 32 syl3anc K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V ˙ U V = U
34 25 33 mpbid K HL W H P A ¬ P ˙ W Q A P Q V A V ˙ W V ˙ P ˙ Q V = U