Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme22.l |
|
2 |
|
cdleme22.j |
|
3 |
|
cdleme22.m |
|
4 |
|
cdleme22.a |
|
5 |
|
cdleme22.h |
|
6 |
|
simp1l |
|
7 |
|
simp1r1 |
|
8 |
|
simp1r2 |
|
9 |
|
simp1r3 |
|
10 |
|
eqid |
|
11 |
2 4 10
|
llni2 |
|
12 |
6 7 8 9 11
|
syl31anc |
|
13 |
4 10
|
llnneat |
|
14 |
6 12 13
|
syl2anc |
|
15 |
|
eqid |
|
16 |
15 10
|
llnn0 |
|
17 |
6 12 16
|
syl2anc |
|
18 |
14 17
|
jca |
|
19 |
|
df-ne |
|
20 |
19
|
anbi2i |
|
21 |
|
pm4.56 |
|
22 |
20 21
|
bitri |
|
23 |
18 22
|
sylib |
|
24 |
|
simp3r2 |
|
25 |
|
simp3l |
|
26 |
1 2 4
|
hlatlej1 |
|
27 |
6 8 25 26
|
syl3anc |
|
28 |
6
|
hllatd |
|
29 |
|
eqid |
|
30 |
29 4
|
atbase |
|
31 |
7 30
|
syl |
|
32 |
29 4
|
atbase |
|
33 |
8 32
|
syl |
|
34 |
29 2 4
|
hlatjcl |
|
35 |
6 8 25 34
|
syl3anc |
|
36 |
29 1 2
|
latjle12 |
|
37 |
28 31 33 35 36
|
syl13anc |
|
38 |
24 27 37
|
mpbi2and |
|
39 |
38
|
adantr |
|
40 |
|
simp3r3 |
|
41 |
40
|
adantr |
|
42 |
|
simpr |
|
43 |
|
simp21 |
|
44 |
|
simp22 |
|
45 |
29 2 4
|
hlatjcl |
|
46 |
6 43 44 45
|
syl3anc |
|
47 |
29 1 2
|
latjle12 |
|
48 |
28 31 33 46 47
|
syl13anc |
|
49 |
48
|
adantr |
|
50 |
41 42 49
|
mpbi2and |
|
51 |
29 2 4
|
hlatjcl |
|
52 |
6 7 8 51
|
syl3anc |
|
53 |
29 1 3
|
latlem12 |
|
54 |
28 52 35 46 53
|
syl13anc |
|
55 |
54
|
adantr |
|
56 |
39 50 55
|
mpbi2and |
|
57 |
56
|
ex |
|
58 |
|
hlop |
|
59 |
6 58
|
syl |
|
60 |
59
|
adantr |
|
61 |
52
|
adantr |
|
62 |
|
simprl |
|
63 |
|
simprr |
|
64 |
29 1 15 4
|
leat3 |
|
65 |
60 61 62 63 64
|
syl31anc |
|
66 |
65
|
exp32 |
|
67 |
|
breq2 |
|
68 |
67
|
biimpa |
|
69 |
29 1 15
|
ople0 |
|
70 |
59 52 69
|
syl2anc |
|
71 |
68 70
|
syl5ib |
|
72 |
71
|
imp |
|
73 |
72
|
olcd |
|
74 |
73
|
exp32 |
|
75 |
|
simp3r1 |
|
76 |
2 3 15 4
|
2atmat0 |
|
77 |
6 8 25 43 44 75 76
|
syl33anc |
|
78 |
66 74 77
|
mpjaod |
|
79 |
57 78
|
syld |
|
80 |
23 79
|
mtod |
|