Metamath Proof Explorer


Theorem cdleme23a

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 8-Dec-2012)

Ref Expression
Hypotheses cdleme23.b B = Base K
cdleme23.l ˙ = K
cdleme23.j ˙ = join K
cdleme23.m ˙ = meet K
cdleme23.a A = Atoms K
cdleme23.h H = LHyp K
cdleme23.v V = S ˙ T ˙ X ˙ W
Assertion cdleme23a K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X V ˙ W

Proof

Step Hyp Ref Expression
1 cdleme23.b B = Base K
2 cdleme23.l ˙ = K
3 cdleme23.j ˙ = join K
4 cdleme23.m ˙ = meet K
5 cdleme23.a A = Atoms K
6 cdleme23.h H = LHyp K
7 cdleme23.v V = S ˙ T ˙ X ˙ W
8 simp11l K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X K HL
9 8 hllatd K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X K Lat
10 simp12l K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X S A
11 simp13l K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X T A
12 1 3 5 hlatjcl K HL S A T A S ˙ T B
13 8 10 11 12 syl3anc K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X S ˙ T B
14 simp2l K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X X B
15 simp11r K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X W H
16 1 6 lhpbase W H W B
17 15 16 syl K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X W B
18 1 4 latmcl K Lat X B W B X ˙ W B
19 9 14 17 18 syl3anc K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X X ˙ W B
20 1 4 latmcl K Lat S ˙ T B X ˙ W B S ˙ T ˙ X ˙ W B
21 9 13 19 20 syl3anc K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X S ˙ T ˙ X ˙ W B
22 1 2 4 latmle2 K Lat S ˙ T B X ˙ W B S ˙ T ˙ X ˙ W ˙ X ˙ W
23 9 13 19 22 syl3anc K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X S ˙ T ˙ X ˙ W ˙ X ˙ W
24 1 2 4 latmle2 K Lat X B W B X ˙ W ˙ W
25 9 14 17 24 syl3anc K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X X ˙ W ˙ W
26 1 2 9 21 19 17 23 25 lattrd K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X S ˙ T ˙ X ˙ W ˙ W
27 7 26 eqbrtrid K HL W H S A ¬ S ˙ W T A ¬ T ˙ W X B ¬ X ˙ W S T S ˙ X ˙ W = X T ˙ X ˙ W = X V ˙ W