Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme25cl
Next ⟩
cdleme25cv
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme25cl
Description:
Show closure of the unique element in
cdleme25c
.
(Contributed by
NM
, 2-Feb-2013)
Ref
Expression
Hypotheses
cdleme24.b
⊢
B
=
Base
K
cdleme24.l
⊢
≤
˙
=
≤
K
cdleme24.j
⊢
∨
˙
=
join
⁡
K
cdleme24.m
⊢
∧
˙
=
meet
⁡
K
cdleme24.a
⊢
A
=
Atoms
⁡
K
cdleme24.h
⊢
H
=
LHyp
⁡
K
cdleme24.u
⊢
U
=
P
∨
˙
Q
∧
˙
W
cdleme24.f
⊢
F
=
s
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
s
∧
˙
W
cdleme24.n
⊢
N
=
P
∨
˙
Q
∧
˙
F
∨
˙
R
∨
˙
s
∧
˙
W
cdleme25cl.i
⊢
I
=
ι
u
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
¬
s
≤
˙
P
∨
˙
Q
→
u
=
N
Assertion
cdleme25cl
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
P
≠
Q
∧
R
≤
˙
P
∨
˙
Q
→
I
∈
B
Proof
Step
Hyp
Ref
Expression
1
cdleme24.b
⊢
B
=
Base
K
2
cdleme24.l
⊢
≤
˙
=
≤
K
3
cdleme24.j
⊢
∨
˙
=
join
⁡
K
4
cdleme24.m
⊢
∧
˙
=
meet
⁡
K
5
cdleme24.a
⊢
A
=
Atoms
⁡
K
6
cdleme24.h
⊢
H
=
LHyp
⁡
K
7
cdleme24.u
⊢
U
=
P
∨
˙
Q
∧
˙
W
8
cdleme24.f
⊢
F
=
s
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
s
∧
˙
W
9
cdleme24.n
⊢
N
=
P
∨
˙
Q
∧
˙
F
∨
˙
R
∨
˙
s
∧
˙
W
10
cdleme25cl.i
⊢
I
=
ι
u
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
¬
s
≤
˙
P
∨
˙
Q
→
u
=
N
11
1
2
3
4
5
6
7
8
9
cdleme25c
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
P
≠
Q
∧
R
≤
˙
P
∨
˙
Q
→
∃!
u
∈
B
∀
s
∈
A
¬
s
≤
˙
W
∧
¬
s
≤
˙
P
∨
˙
Q
→
u
=
N
12
riotacl
⊢
∃!
u
∈
B
∀
s
∈
A
¬
s
≤
˙
W
∧
¬
s
≤
˙
P
∨
˙
Q
→
u
=
N
→
ι
u
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
¬
s
≤
˙
P
∨
˙
Q
→
u
=
N
∈
B
13
11
12
syl
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
P
≠
Q
∧
R
≤
˙
P
∨
˙
Q
→
ι
u
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
¬
s
≤
˙
P
∨
˙
Q
→
u
=
N
∈
B
14
10
13
eqeltrid
⊢
K
∈
HL
∧
W
∈
H
∧
P
∈
A
∧
¬
P
≤
˙
W
∧
Q
∈
A
∧
¬
Q
≤
˙
W
∧
R
∈
A
∧
¬
R
≤
˙
W
∧
P
≠
Q
∧
R
≤
˙
P
∨
˙
Q
→
I
∈
B