Metamath Proof Explorer


Theorem cdleme25dN

Description: Transform cdleme25c . (Contributed by NM, 19-Jan-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme24.b B = Base K
cdleme24.l ˙ = K
cdleme24.j ˙ = join K
cdleme24.m ˙ = meet K
cdleme24.a A = Atoms K
cdleme24.h H = LHyp K
cdleme24.u U = P ˙ Q ˙ W
cdleme24.f F = s ˙ U ˙ Q ˙ P ˙ s ˙ W
cdleme24.n N = P ˙ Q ˙ F ˙ R ˙ s ˙ W
Assertion cdleme25dN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q ∃! u B s A ¬ s ˙ W ¬ s ˙ P ˙ Q u = N

Proof

Step Hyp Ref Expression
1 cdleme24.b B = Base K
2 cdleme24.l ˙ = K
3 cdleme24.j ˙ = join K
4 cdleme24.m ˙ = meet K
5 cdleme24.a A = Atoms K
6 cdleme24.h H = LHyp K
7 cdleme24.u U = P ˙ Q ˙ W
8 cdleme24.f F = s ˙ U ˙ Q ˙ P ˙ s ˙ W
9 cdleme24.n N = P ˙ Q ˙ F ˙ R ˙ s ˙ W
10 1 2 3 4 5 6 7 8 9 cdleme25c K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q ∃! u B s A ¬ s ˙ W ¬ s ˙ P ˙ Q u = N
11 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q K HL
12 11 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A K HL
13 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q W H
14 13 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A W H
15 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q P A
16 15 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A P A
17 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q Q A
18 17 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A Q A
19 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A R A
20 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A s A
21 2 3 4 5 6 7 8 9 1 cdleme22gb K HL W H P A Q A R A s A N B
22 12 14 16 18 19 20 21 syl222anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A N B
23 22 ex K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A N B
24 23 a1dd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A ¬ s ˙ W ¬ s ˙ P ˙ Q N B
25 24 ralrimiv K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A ¬ s ˙ W ¬ s ˙ P ˙ Q N B
26 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q P A ¬ P ˙ W
27 simp13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q Q A ¬ Q ˙ W
28 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q P Q
29 2 3 5 6 cdlemb2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q s A ¬ s ˙ W ¬ s ˙ P ˙ Q
30 11 13 26 27 28 29 syl221anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q s A ¬ s ˙ W ¬ s ˙ P ˙ Q
31 reusv2 s A ¬ s ˙ W ¬ s ˙ P ˙ Q N B s A ¬ s ˙ W ¬ s ˙ P ˙ Q ∃! u B s A ¬ s ˙ W ¬ s ˙ P ˙ Q u = N ∃! u B s A ¬ s ˙ W ¬ s ˙ P ˙ Q u = N
32 25 30 31 syl2anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q ∃! u B s A ¬ s ˙ W ¬ s ˙ P ˙ Q u = N ∃! u B s A ¬ s ˙ W ¬ s ˙ P ˙ Q u = N
33 10 32 mpbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q R ˙ P ˙ Q ∃! u B s A ¬ s ˙ W ¬ s ˙ P ˙ Q u = N