Metamath Proof Explorer


Theorem cdleme27cl

Description: Part of proof of Lemma E in Crawley p. 113. Closure of C . (Contributed by NM, 6-Feb-2013)

Ref Expression
Hypotheses cdleme26.b B = Base K
cdleme26.l ˙ = K
cdleme26.j ˙ = join K
cdleme26.m ˙ = meet K
cdleme26.a A = Atoms K
cdleme26.h H = LHyp K
cdleme27.u U = P ˙ Q ˙ W
cdleme27.f F = s ˙ U ˙ Q ˙ P ˙ s ˙ W
cdleme27.z Z = z ˙ U ˙ Q ˙ P ˙ z ˙ W
cdleme27.n N = P ˙ Q ˙ Z ˙ s ˙ z ˙ W
cdleme27.d D = ι u B | z A ¬ z ˙ W ¬ z ˙ P ˙ Q u = N
cdleme27.c C = if s ˙ P ˙ Q D F
Assertion cdleme27cl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q C B

Proof

Step Hyp Ref Expression
1 cdleme26.b B = Base K
2 cdleme26.l ˙ = K
3 cdleme26.j ˙ = join K
4 cdleme26.m ˙ = meet K
5 cdleme26.a A = Atoms K
6 cdleme26.h H = LHyp K
7 cdleme27.u U = P ˙ Q ˙ W
8 cdleme27.f F = s ˙ U ˙ Q ˙ P ˙ s ˙ W
9 cdleme27.z Z = z ˙ U ˙ Q ˙ P ˙ z ˙ W
10 cdleme27.n N = P ˙ Q ˙ Z ˙ s ˙ z ˙ W
11 cdleme27.d D = ι u B | z A ¬ z ˙ W ¬ z ˙ P ˙ Q u = N
12 cdleme27.c C = if s ˙ P ˙ Q D F
13 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q K HL W H
14 simpl2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q P A ¬ P ˙ W
15 simpl2r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q Q A ¬ Q ˙ W
16 simpl3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q s A ¬ s ˙ W
17 simpl3r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q P Q
18 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q s ˙ P ˙ Q
19 1 2 3 4 5 6 7 9 10 11 cdleme25cl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q D B
20 13 14 15 16 17 18 19 syl312anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s ˙ P ˙ Q D B
21 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q K HL
22 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q W H
23 simp2ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q P A
24 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q Q A
25 simp3ll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q s A
26 2 3 4 5 6 7 8 1 cdleme1b K HL W H P A Q A s A F B
27 21 22 23 24 25 26 syl23anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q F B
28 27 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q ¬ s ˙ P ˙ Q F B
29 20 28 ifclda K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q if s ˙ P ˙ Q D F B
30 12 29 eqeltrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W s A ¬ s ˙ W P Q C B