Description: Part of proof of Lemma E in Crawley p. 113. F represents f(r). W is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa above, we show that f(r) e. W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as F e. A /\ -. F .<_ W . Their proof provides no details of our lemmas cdleme3b through cdleme3 , so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cdleme1.l | |
|
| cdleme1.j | |
||
| cdleme1.m | |
||
| cdleme1.a | |
||
| cdleme1.h | |
||
| cdleme1.u | |
||
| cdleme1.f | |
||
| Assertion | cdleme3 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme1.l | |
|
| 2 | cdleme1.j | |
|
| 3 | cdleme1.m | |
|
| 4 | cdleme1.a | |
|
| 5 | cdleme1.h | |
|
| 6 | cdleme1.u | |
|
| 7 | cdleme1.f | |
|
| 8 | eqid | |
|
| 9 | 1 2 3 4 5 6 7 8 | cdleme3g | |
| 10 | simp1l | |
|
| 11 | 10 | hllatd | |
| 12 | simp23l | |
|
| 13 | eqid | |
|
| 14 | 13 4 | atbase | |
| 15 | 12 14 | syl | |
| 16 | 1 2 3 4 5 6 7 | cdleme3fa | |
| 17 | 13 4 | atbase | |
| 18 | 16 17 | syl | |
| 19 | 13 1 2 | latlej2 | |
| 20 | 11 15 18 19 | syl3anc | |
| 21 | 20 | biantrurd | |
| 22 | 13 2 4 | hlatjcl | |
| 23 | 10 12 16 22 | syl3anc | |
| 24 | simp1r | |
|
| 25 | 13 5 | lhpbase | |
| 26 | 24 25 | syl | |
| 27 | 13 1 3 | latlem12 | |
| 28 | 11 18 23 26 27 | syl13anc | |
| 29 | simp1 | |
|
| 30 | simp21l | |
|
| 31 | simp22l | |
|
| 32 | simp23 | |
|
| 33 | 1 2 3 4 5 6 7 | cdleme2 | |
| 34 | 29 30 31 32 33 | syl13anc | |
| 35 | 34 | breq2d | |
| 36 | 28 35 | bitrd | |
| 37 | hlatl | |
|
| 38 | 10 37 | syl | |
| 39 | simp21 | |
|
| 40 | simp3l | |
|
| 41 | 1 2 3 4 5 6 | lhpat2 | |
| 42 | 29 39 31 40 41 | syl112anc | |
| 43 | 1 4 | atcmp | |
| 44 | 38 16 42 43 | syl3anc | |
| 45 | 21 36 44 | 3bitrd | |
| 46 | 45 | necon3bbid | |
| 47 | 9 46 | mpbird | |