Metamath Proof Explorer


Theorem cdleme3

Description: Part of proof of Lemma E in Crawley p. 113. F represents f(r). W is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa above, we show that f(r) e. W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as F e. A /\ -. F .<_ W . Their proof provides no details of our lemmas cdleme3b through cdleme3 , so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙ = K
cdleme1.j ˙ = join K
cdleme1.m ˙ = meet K
cdleme1.a A = Atoms K
cdleme1.h H = LHyp K
cdleme1.u U = P ˙ Q ˙ W
cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
Assertion cdleme3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q ¬ F ˙ W

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙ = K
2 cdleme1.j ˙ = join K
3 cdleme1.m ˙ = meet K
4 cdleme1.a A = Atoms K
5 cdleme1.h H = LHyp K
6 cdleme1.u U = P ˙ Q ˙ W
7 cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 eqid P ˙ R ˙ W = P ˙ R ˙ W
9 1 2 3 4 5 6 7 8 cdleme3g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F U
10 simp1l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K HL
11 10 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K Lat
12 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q R A
13 eqid Base K = Base K
14 13 4 atbase R A R Base K
15 12 14 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q R Base K
16 1 2 3 4 5 6 7 cdleme3fa K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F A
17 13 4 atbase F A F Base K
18 16 17 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F Base K
19 13 1 2 latlej2 K Lat R Base K F Base K F ˙ R ˙ F
20 11 15 18 19 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F ˙ R ˙ F
21 20 biantrurd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F ˙ W F ˙ R ˙ F F ˙ W
22 13 2 4 hlatjcl K HL R A F A R ˙ F Base K
23 10 12 16 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q R ˙ F Base K
24 simp1r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q W H
25 13 5 lhpbase W H W Base K
26 24 25 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q W Base K
27 13 1 3 latlem12 K Lat F Base K R ˙ F Base K W Base K F ˙ R ˙ F F ˙ W F ˙ R ˙ F ˙ W
28 11 18 23 26 27 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F ˙ R ˙ F F ˙ W F ˙ R ˙ F ˙ W
29 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K HL W H
30 simp21l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P A
31 simp22l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q Q A
32 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q R A ¬ R ˙ W
33 1 2 3 4 5 6 7 cdleme2 K HL W H P A Q A R A ¬ R ˙ W R ˙ F ˙ W = U
34 29 30 31 32 33 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q R ˙ F ˙ W = U
35 34 breq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F ˙ R ˙ F ˙ W F ˙ U
36 28 35 bitrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F ˙ R ˙ F F ˙ W F ˙ U
37 hlatl K HL K AtLat
38 10 37 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q K AtLat
39 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P A ¬ P ˙ W
40 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q P Q
41 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
42 29 39 31 40 41 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q U A
43 1 4 atcmp K AtLat F A U A F ˙ U F = U
44 38 16 42 43 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F ˙ U F = U
45 21 36 44 3bitrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q F ˙ W F = U
46 45 necon3bbid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q ¬ F ˙ W F U
47 9 46 mpbird K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W R A ¬ R ˙ W P Q ¬ R ˙ P ˙ Q ¬ F ˙ W