Metamath Proof Explorer


Theorem cdleme31fv

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 10-Feb-2013)

Ref Expression
Hypotheses cdleme31.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
cdleme31.f F = x B if P Q ¬ x ˙ W O x
cdleme31.c C = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
Assertion cdleme31fv X B F X = if P Q ¬ X ˙ W C X

Proof

Step Hyp Ref Expression
1 cdleme31.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
2 cdleme31.f F = x B if P Q ¬ x ˙ W O x
3 cdleme31.c C = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
4 riotaex ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W V
5 3 4 eqeltri C V
6 ifexg C V X B if P Q ¬ X ˙ W C X V
7 5 6 mpan X B if P Q ¬ X ˙ W C X V
8 breq1 x = X x ˙ W X ˙ W
9 8 notbid x = X ¬ x ˙ W ¬ X ˙ W
10 9 anbi2d x = X P Q ¬ x ˙ W P Q ¬ X ˙ W
11 oveq1 x = X x ˙ W = X ˙ W
12 11 oveq2d x = X s ˙ x ˙ W = s ˙ X ˙ W
13 id x = X x = X
14 12 13 eqeq12d x = X s ˙ x ˙ W = x s ˙ X ˙ W = X
15 14 anbi2d x = X ¬ s ˙ W s ˙ x ˙ W = x ¬ s ˙ W s ˙ X ˙ W = X
16 11 oveq2d x = X N ˙ x ˙ W = N ˙ X ˙ W
17 16 eqeq2d x = X z = N ˙ x ˙ W z = N ˙ X ˙ W
18 15 17 imbi12d x = X ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
19 18 ralbidv x = X s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
20 19 riotabidv x = X ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
21 20 1 3 3eqtr4g x = X O = C
22 10 21 13 ifbieq12d x = X if P Q ¬ x ˙ W O x = if P Q ¬ X ˙ W C X
23 22 2 fvmptg X B if P Q ¬ X ˙ W C X V F X = if P Q ¬ X ˙ W C X
24 7 23 mpdan X B F X = if P Q ¬ X ˙ W C X