Metamath Proof Explorer


Theorem cdleme31fv1

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 10-Feb-2013)

Ref Expression
Hypotheses cdleme31.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
cdleme31.f F = x B if P Q ¬ x ˙ W O x
cdleme31.c C = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
Assertion cdleme31fv1 X B P Q ¬ X ˙ W F X = C

Proof

Step Hyp Ref Expression
1 cdleme31.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
2 cdleme31.f F = x B if P Q ¬ x ˙ W O x
3 cdleme31.c C = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
4 1 2 3 cdleme31fv X B F X = if P Q ¬ X ˙ W C X
5 iftrue P Q ¬ X ˙ W if P Q ¬ X ˙ W C X = C
6 4 5 sylan9eq X B P Q ¬ X ˙ W F X = C