Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme31fv1
Next ⟩
cdleme31fv1s
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme31fv1
Description:
Part of proof of Lemma E in
Crawley
p. 113.
(Contributed by
NM
, 10-Feb-2013)
Ref
Expression
Hypotheses
cdleme31.o
⊢
O
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
cdleme31.f
⊢
F
=
x
∈
B
⟼
if
P
≠
Q
∧
¬
x
≤
˙
W
O
x
cdleme31.c
⊢
C
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
Assertion
cdleme31fv1
⊢
X
∈
B
∧
P
≠
Q
∧
¬
X
≤
˙
W
→
F
⁡
X
=
C
Proof
Step
Hyp
Ref
Expression
1
cdleme31.o
⊢
O
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
2
cdleme31.f
⊢
F
=
x
∈
B
⟼
if
P
≠
Q
∧
¬
x
≤
˙
W
O
x
3
cdleme31.c
⊢
C
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
4
1
2
3
cdleme31fv
⊢
X
∈
B
→
F
⁡
X
=
if
P
≠
Q
∧
¬
X
≤
˙
W
C
X
5
iftrue
⊢
P
≠
Q
∧
¬
X
≤
˙
W
→
if
P
≠
Q
∧
¬
X
≤
˙
W
C
X
=
C
6
4
5
sylan9eq
⊢
X
∈
B
∧
P
≠
Q
∧
¬
X
≤
˙
W
→
F
⁡
X
=
C