Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme31se2
Next ⟩
cdleme31sc
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme31se2
Description:
Part of proof of Lemma D in
Crawley
p. 113.
(Contributed by
NM
, 3-Apr-2013)
Ref
Expression
Hypotheses
cdleme31se2.e
⊢
E
=
P
∨
˙
Q
∧
˙
D
∨
˙
R
∨
˙
t
∧
˙
W
cdleme31se2.y
⊢
Y
=
P
∨
˙
Q
∧
˙
⦋
S
/
t
⦌
D
∨
˙
R
∨
˙
S
∧
˙
W
Assertion
cdleme31se2
⊢
S
∈
A
→
⦋
S
/
t
⦌
E
=
Y
Proof
Step
Hyp
Ref
Expression
1
cdleme31se2.e
⊢
E
=
P
∨
˙
Q
∧
˙
D
∨
˙
R
∨
˙
t
∧
˙
W
2
cdleme31se2.y
⊢
Y
=
P
∨
˙
Q
∧
˙
⦋
S
/
t
⦌
D
∨
˙
R
∨
˙
S
∧
˙
W
3
nfcv
⊢
Ⅎ
_
t
P
∨
˙
Q
4
nfcv
⊢
Ⅎ
_
t
∧
˙
5
nfcsb1v
⊢
Ⅎ
_
t
⦋
S
/
t
⦌
D
6
nfcv
⊢
Ⅎ
_
t
∨
˙
7
nfcv
⊢
Ⅎ
_
t
R
∨
˙
S
∧
˙
W
8
5
6
7
nfov
⊢
Ⅎ
_
t
⦋
S
/
t
⦌
D
∨
˙
R
∨
˙
S
∧
˙
W
9
3
4
8
nfov
⊢
Ⅎ
_
t
P
∨
˙
Q
∧
˙
⦋
S
/
t
⦌
D
∨
˙
R
∨
˙
S
∧
˙
W
10
9
a1i
⊢
S
∈
A
→
Ⅎ
_
t
P
∨
˙
Q
∧
˙
⦋
S
/
t
⦌
D
∨
˙
R
∨
˙
S
∧
˙
W
11
csbeq1a
⊢
t
=
S
→
D
=
⦋
S
/
t
⦌
D
12
oveq2
⊢
t
=
S
→
R
∨
˙
t
=
R
∨
˙
S
13
12
oveq1d
⊢
t
=
S
→
R
∨
˙
t
∧
˙
W
=
R
∨
˙
S
∧
˙
W
14
11
13
oveq12d
⊢
t
=
S
→
D
∨
˙
R
∨
˙
t
∧
˙
W
=
⦋
S
/
t
⦌
D
∨
˙
R
∨
˙
S
∧
˙
W
15
14
oveq2d
⊢
t
=
S
→
P
∨
˙
Q
∧
˙
D
∨
˙
R
∨
˙
t
∧
˙
W
=
P
∨
˙
Q
∧
˙
⦋
S
/
t
⦌
D
∨
˙
R
∨
˙
S
∧
˙
W
16
10
15
csbiegf
⊢
S
∈
A
→
⦋
S
/
t
⦌
P
∨
˙
Q
∧
˙
D
∨
˙
R
∨
˙
t
∧
˙
W
=
P
∨
˙
Q
∧
˙
⦋
S
/
t
⦌
D
∨
˙
R
∨
˙
S
∧
˙
W
17
1
csbeq2i
⊢
⦋
S
/
t
⦌
E
=
⦋
S
/
t
⦌
P
∨
˙
Q
∧
˙
D
∨
˙
R
∨
˙
t
∧
˙
W
18
16
17
2
3eqtr4g
⊢
S
∈
A
→
⦋
S
/
t
⦌
E
=
Y