Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme31sn1c
Next ⟩
cdleme31sn2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme31sn1c
Description:
Part of proof of Lemma E in
Crawley
p. 113.
(Contributed by
NM
, 1-Mar-2013)
Ref
Expression
Hypotheses
cdleme31sn1c.g
⊢
G
=
P
∨
˙
Q
∧
˙
E
∨
˙
s
∨
˙
t
∧
˙
W
cdleme31sn1c.i
⊢
I
=
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
G
cdleme31sn1c.n
⊢
N
=
if
s
≤
˙
P
∨
˙
Q
I
D
cdleme31sn1c.y
⊢
Y
=
P
∨
˙
Q
∧
˙
E
∨
˙
R
∨
˙
t
∧
˙
W
cdleme31sn1c.c
⊢
C
=
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
Y
Assertion
cdleme31sn1c
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
⦋
R
/
s
⦌
N
=
C
Proof
Step
Hyp
Ref
Expression
1
cdleme31sn1c.g
⊢
G
=
P
∨
˙
Q
∧
˙
E
∨
˙
s
∨
˙
t
∧
˙
W
2
cdleme31sn1c.i
⊢
I
=
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
G
3
cdleme31sn1c.n
⊢
N
=
if
s
≤
˙
P
∨
˙
Q
I
D
4
cdleme31sn1c.y
⊢
Y
=
P
∨
˙
Q
∧
˙
E
∨
˙
R
∨
˙
t
∧
˙
W
5
cdleme31sn1c.c
⊢
C
=
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
Y
6
eqid
⊢
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
⦋
R
/
s
⦌
G
=
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
⦋
R
/
s
⦌
G
7
2
3
6
cdleme31sn1
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
⦋
R
/
s
⦌
N
=
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
⦋
R
/
s
⦌
G
8
1
4
cdleme31se
⊢
R
∈
A
→
⦋
R
/
s
⦌
G
=
Y
9
8
adantr
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
⦋
R
/
s
⦌
G
=
Y
10
9
eqeq2d
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
y
=
⦋
R
/
s
⦌
G
↔
y
=
Y
11
10
imbi2d
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
⦋
R
/
s
⦌
G
↔
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
Y
12
11
ralbidv
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
⦋
R
/
s
⦌
G
↔
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
Y
13
12
riotabidv
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
⦋
R
/
s
⦌
G
=
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
Y
14
13
5
eqtr4di
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
ι
y
∈
B
|
∀
t
∈
A
¬
t
≤
˙
W
∧
¬
t
≤
˙
P
∨
˙
Q
→
y
=
⦋
R
/
s
⦌
G
=
C
15
7
14
eqtrd
⊢
R
∈
A
∧
R
≤
˙
P
∨
˙
Q
→
⦋
R
/
s
⦌
N
=
C