Metamath Proof Explorer


Theorem cdleme31so

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 25-Feb-2013)

Ref Expression
Hypotheses cdleme31so.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
cdleme31so.c C = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
Assertion cdleme31so X B X / x O = C

Proof

Step Hyp Ref Expression
1 cdleme31so.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
2 cdleme31so.c C = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
3 nfcvd X B _ x ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
4 oveq1 x = X x ˙ W = X ˙ W
5 4 oveq2d x = X s ˙ x ˙ W = s ˙ X ˙ W
6 id x = X x = X
7 5 6 eqeq12d x = X s ˙ x ˙ W = x s ˙ X ˙ W = X
8 7 anbi2d x = X ¬ s ˙ W s ˙ x ˙ W = x ¬ s ˙ W s ˙ X ˙ W = X
9 4 oveq2d x = X N ˙ x ˙ W = N ˙ X ˙ W
10 9 eqeq2d x = X z = N ˙ x ˙ W z = N ˙ X ˙ W
11 8 10 imbi12d x = X ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
12 11 ralbidv x = X s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
13 12 riotabidv x = X ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
14 3 13 csbiegf X B X / x ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
15 1 csbeq2i X / x O = X / x ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
16 14 15 2 3eqtr4g X B X / x O = C