Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme31so
Next ⟩
cdleme31sn
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme31so
Description:
Part of proof of Lemma E in
Crawley
p. 113.
(Contributed by
NM
, 25-Feb-2013)
Ref
Expression
Hypotheses
cdleme31so.o
⊢
O
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
cdleme31so.c
⊢
C
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
Assertion
cdleme31so
⊢
X
∈
B
→
⦋
X
/
x
⦌
O
=
C
Proof
Step
Hyp
Ref
Expression
1
cdleme31so.o
⊢
O
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
2
cdleme31so.c
⊢
C
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
3
nfcvd
⊢
X
∈
B
→
Ⅎ
_
x
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
4
oveq1
⊢
x
=
X
→
x
∧
˙
W
=
X
∧
˙
W
5
4
oveq2d
⊢
x
=
X
→
s
∨
˙
x
∧
˙
W
=
s
∨
˙
X
∧
˙
W
6
id
⊢
x
=
X
→
x
=
X
7
5
6
eqeq12d
⊢
x
=
X
→
s
∨
˙
x
∧
˙
W
=
x
↔
s
∨
˙
X
∧
˙
W
=
X
8
7
anbi2d
⊢
x
=
X
→
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
↔
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
9
4
oveq2d
⊢
x
=
X
→
N
∨
˙
x
∧
˙
W
=
N
∨
˙
X
∧
˙
W
10
9
eqeq2d
⊢
x
=
X
→
z
=
N
∨
˙
x
∧
˙
W
↔
z
=
N
∨
˙
X
∧
˙
W
11
8
10
imbi12d
⊢
x
=
X
→
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
↔
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
12
11
ralbidv
⊢
x
=
X
→
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
↔
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
13
12
riotabidv
⊢
x
=
X
→
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
14
3
13
csbiegf
⊢
X
∈
B
→
⦋
X
/
x
⦌
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
=
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
X
∧
˙
W
=
X
→
z
=
N
∨
˙
X
∧
˙
W
15
1
csbeq2i
⊢
⦋
X
/
x
⦌
O
=
⦋
X
/
x
⦌
ι
z
∈
B
|
∀
s
∈
A
¬
s
≤
˙
W
∧
s
∨
˙
x
∧
˙
W
=
x
→
z
=
N
∨
˙
x
∧
˙
W
16
14
15
2
3eqtr4g
⊢
X
∈
B
→
⦋
X
/
x
⦌
O
=
C