Metamath Proof Explorer


Theorem cdleme32a

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 19-Feb-2013)

Ref Expression
Hypotheses cdleme32.b B = Base K
cdleme32.l ˙ = K
cdleme32.j ˙ = join K
cdleme32.m ˙ = meet K
cdleme32.a A = Atoms K
cdleme32.h H = LHyp K
cdleme32.u U = P ˙ Q ˙ W
cdleme32.c C = s ˙ U ˙ Q ˙ P ˙ s ˙ W
cdleme32.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdleme32.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdleme32.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E
cdleme32.n N = if s ˙ P ˙ Q I C
cdleme32.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
cdleme32.f F = x B if P Q ¬ x ˙ W O x
Assertion cdleme32a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W s A ¬ s ˙ W s ˙ X ˙ W = X F X = N ˙ X ˙ W

Proof

Step Hyp Ref Expression
1 cdleme32.b B = Base K
2 cdleme32.l ˙ = K
3 cdleme32.j ˙ = join K
4 cdleme32.m ˙ = meet K
5 cdleme32.a A = Atoms K
6 cdleme32.h H = LHyp K
7 cdleme32.u U = P ˙ Q ˙ W
8 cdleme32.c C = s ˙ U ˙ Q ˙ P ˙ s ˙ W
9 cdleme32.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
10 cdleme32.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
11 cdleme32.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E
12 cdleme32.n N = if s ˙ P ˙ Q I C
13 cdleme32.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
14 cdleme32.f F = x B if P Q ¬ x ˙ W O x
15 1 fvexi B V
16 anass s A ¬ s ˙ W s ˙ X ˙ W = X s A ¬ s ˙ W s ˙ X ˙ W = X
17 eqid ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
18 13 14 17 cdleme31fv1 X B P Q ¬ X ˙ W F X = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
19 18 adantl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W F X = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B F X B
21 20 adantrr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W F X B
22 19 21 riotasvd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W B V s A ¬ s ˙ W s ˙ X ˙ W = X F X = N ˙ X ˙ W
23 16 22 syl5bi K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W B V s A ¬ s ˙ W s ˙ X ˙ W = X F X = N ˙ X ˙ W
24 15 23 mpan2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W s A ¬ s ˙ W s ˙ X ˙ W = X F X = N ˙ X ˙ W
25 24 3impia K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W s A ¬ s ˙ W s ˙ X ˙ W = X F X = N ˙ X ˙ W