Metamath Proof Explorer


Theorem cdleme32fvcl

Description: Part of proof of Lemma D in Crawley p. 113. Closure of the function F . (Contributed by NM, 10-Feb-2013)

Ref Expression
Hypotheses cdleme32.b B = Base K
cdleme32.l ˙ = K
cdleme32.j ˙ = join K
cdleme32.m ˙ = meet K
cdleme32.a A = Atoms K
cdleme32.h H = LHyp K
cdleme32.u U = P ˙ Q ˙ W
cdleme32.c C = s ˙ U ˙ Q ˙ P ˙ s ˙ W
cdleme32.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdleme32.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdleme32.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E
cdleme32.n N = if s ˙ P ˙ Q I C
cdleme32.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
cdleme32.f F = x B if P Q ¬ x ˙ W O x
Assertion cdleme32fvcl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B F X B

Proof

Step Hyp Ref Expression
1 cdleme32.b B = Base K
2 cdleme32.l ˙ = K
3 cdleme32.j ˙ = join K
4 cdleme32.m ˙ = meet K
5 cdleme32.a A = Atoms K
6 cdleme32.h H = LHyp K
7 cdleme32.u U = P ˙ Q ˙ W
8 cdleme32.c C = s ˙ U ˙ Q ˙ P ˙ s ˙ W
9 cdleme32.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
10 cdleme32.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
11 cdleme32.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E
12 cdleme32.n N = if s ˙ P ˙ Q I C
13 cdleme32.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
14 cdleme32.f F = x B if P Q ¬ x ˙ W O x
15 eqid ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
16 13 14 15 cdleme31fv1 X B P Q ¬ X ˙ W F X = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
17 16 adantll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W F X = ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W
18 simpll1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W K HL W H
19 simpll2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W P A ¬ P ˙ W
20 simpll3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W Q A ¬ Q ˙ W
21 simprl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W P Q
22 simplr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W X B
23 simprr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W ¬ X ˙ W
24 1 2 3 4 5 6 7 8 9 10 11 12 15 cdleme29cl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q X B ¬ X ˙ W ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W B
25 18 19 20 21 22 23 24 syl312anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W ι z B | s A ¬ s ˙ W s ˙ X ˙ W = X z = N ˙ X ˙ W B
26 17 25 eqeltrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B P Q ¬ X ˙ W F X B
27 14 cdleme31fv2 X B ¬ P Q ¬ X ˙ W F X = X
28 simpl X B ¬ P Q ¬ X ˙ W X B
29 27 28 eqeltrd X B ¬ P Q ¬ X ˙ W F X B
30 29 adantll K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B ¬ P Q ¬ X ˙ W F X B
31 26 30 pm2.61dan K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W X B F X B