Metamath Proof Explorer


Theorem cdleme35a

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙=K
cdleme35.j ˙=joinK
cdleme35.m ˙=meetK
cdleme35.a A=AtomsK
cdleme35.h H=LHypK
cdleme35.u U=P˙Q˙W
cdleme35.f F=R˙U˙Q˙P˙R˙W
Assertion cdleme35a KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QF˙U=R˙U

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙=K
2 cdleme35.j ˙=joinK
3 cdleme35.m ˙=meetK
4 cdleme35.a A=AtomsK
5 cdleme35.h H=LHypK
6 cdleme35.u U=P˙Q˙W
7 cdleme35.f F=R˙U˙Q˙P˙R˙W
8 simp11l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHL
9 8 hllatd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKLat
10 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA
11 eqid BaseK=BaseK
12 11 4 atbase RARBaseK
13 10 12 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRBaseK
14 simp11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QKHLWH
15 simp12 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPA¬P˙W
16 simp13 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQA¬Q˙W
17 simp2r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA¬R˙W
18 simp2l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPQ
19 simp3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙Q¬R˙P˙Q
20 1 2 3 4 5 6 7 cdleme3fa KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFA
21 14 15 16 17 18 19 20 syl132anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QFA
22 11 4 atbase FAFBaseK
23 21 22 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QFBaseK
24 11 1 2 latlej2 KLatRBaseKFBaseKF˙R˙F
25 9 13 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QF˙R˙F
26 simp12l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QPA
27 simp13l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QQA
28 1 2 3 4 5 6 7 cdleme1 KHLWHPAQARA¬R˙WR˙F=R˙U
29 14 26 27 17 28 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR˙F=R˙U
30 25 29 breqtrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QF˙R˙U
31 1 2 3 4 5 6 cdleme0a KHLWHPA¬P˙WQAPQUA
32 14 15 27 18 31 syl112anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QUA
33 11 4 atbase UAUBaseK
34 32 33 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QUBaseK
35 11 1 2 latlej2 KLatRBaseKUBaseKU˙R˙U
36 9 13 34 35 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QU˙R˙U
37 11 2 4 hlatjcl KHLRAUAR˙UBaseK
38 8 10 32 37 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR˙UBaseK
39 11 1 2 latjle12 KLatFBaseKUBaseKR˙UBaseKF˙R˙UU˙R˙UF˙U˙R˙U
40 9 23 34 38 39 syl13anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QF˙R˙UU˙R˙UF˙U˙R˙U
41 30 36 40 mpbi2and KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QF˙U˙R˙U
42 eqid P˙R˙W=P˙R˙W
43 1 2 3 4 5 6 7 42 cdleme3g KHLWHPA¬P˙WQA¬Q˙WRA¬R˙WPQ¬R˙P˙QFU
44 14 15 16 17 18 19 43 syl132anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QFU
45 1 2 4 ps-1 KHLFAUAFURAUAF˙U˙R˙UF˙U=R˙U
46 8 21 32 44 10 32 45 syl132anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QF˙U˙R˙UF˙U=R˙U
47 41 46 mpbid KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QF˙U=R˙U