Metamath Proof Explorer


Theorem cdleme35f

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙ = K
cdleme35.j ˙ = join K
cdleme35.m ˙ = meet K
cdleme35.a A = Atoms K
cdleme35.h H = LHyp K
cdleme35.u U = P ˙ Q ˙ W
cdleme35.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
Assertion cdleme35f K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ U ˙ P ˙ R = R

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙ = K
2 cdleme35.j ˙ = join K
3 cdleme35.m ˙ = meet K
4 cdleme35.a A = Atoms K
5 cdleme35.h H = LHyp K
6 cdleme35.u U = P ˙ Q ˙ W
7 cdleme35.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q K HL
9 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P A
10 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R A
11 2 4 hlatjcom K HL P A R A P ˙ R = R ˙ P
12 8 9 10 11 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P ˙ R = R ˙ P
13 12 oveq2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ U ˙ P ˙ R = R ˙ U ˙ R ˙ P
14 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q K HL W H
15 simp12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P A ¬ P ˙ W
16 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q Q A
17 simp2l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P Q
18 1 2 3 4 5 6 cdleme0a K HL W H P A ¬ P ˙ W Q A P Q U A
19 14 15 16 17 18 syl112anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U A
20 simp12r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q ¬ P ˙ W
21 8 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q K Lat
22 eqid Base K = Base K
23 22 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
24 8 9 16 23 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P ˙ Q Base K
25 simp11r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q W H
26 22 5 lhpbase W H W Base K
27 25 26 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q W Base K
28 22 1 3 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
29 21 24 27 28 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P ˙ Q ˙ W ˙ W
30 6 29 eqbrtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U ˙ W
31 breq1 U = P U ˙ W P ˙ W
32 30 31 syl5ibcom K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U = P P ˙ W
33 32 necon3bd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q ¬ P ˙ W U P
34 20 33 mpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U P
35 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
36 22 1 3 latmle1 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ P ˙ Q
37 21 24 27 36 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P ˙ Q ˙ W ˙ P ˙ Q
38 6 37 eqbrtrid K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U ˙ P ˙ Q
39 1 2 4 hlatlej1 K HL P A Q A P ˙ P ˙ Q
40 8 9 16 39 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P ˙ P ˙ Q
41 22 4 atbase U A U Base K
42 19 41 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U Base K
43 22 4 atbase P A P Base K
44 9 43 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P Base K
45 22 1 2 latjle12 K Lat U Base K P Base K P ˙ Q Base K U ˙ P ˙ Q P ˙ P ˙ Q U ˙ P ˙ P ˙ Q
46 21 42 44 24 45 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U ˙ P ˙ Q P ˙ P ˙ Q U ˙ P ˙ P ˙ Q
47 38 40 46 mpbi2and K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U ˙ P ˙ P ˙ Q
48 22 4 atbase R A R Base K
49 10 48 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R Base K
50 22 2 4 hlatjcl K HL U A P A U ˙ P Base K
51 8 19 9 50 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U ˙ P Base K
52 22 1 lattr K Lat R Base K U ˙ P Base K P ˙ Q Base K R ˙ U ˙ P U ˙ P ˙ P ˙ Q R ˙ P ˙ Q
53 21 49 51 24 52 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ U ˙ P U ˙ P ˙ P ˙ Q R ˙ P ˙ Q
54 47 53 mpan2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ U ˙ P R ˙ P ˙ Q
55 35 54 mtod K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q ¬ R ˙ U ˙ P
56 1 2 3 4 2llnma2 K HL U A P A R A U P ¬ R ˙ U ˙ P R ˙ U ˙ R ˙ P = R
57 8 19 9 10 34 55 56 syl132anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ U ˙ R ˙ P = R
58 13 57 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ U ˙ P ˙ R = R