Metamath Proof Explorer


Theorem cdleme35fnpq

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 19-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙ = K
cdleme35.j ˙ = join K
cdleme35.m ˙ = meet K
cdleme35.a A = Atoms K
cdleme35.h H = LHyp K
cdleme35.u U = P ˙ Q ˙ W
cdleme35.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
Assertion cdleme35fnpq K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q ¬ F ˙ P ˙ Q

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙ = K
2 cdleme35.j ˙ = join K
3 cdleme35.m ˙ = meet K
4 cdleme35.a A = Atoms K
5 cdleme35.h H = LHyp K
6 cdleme35.u U = P ˙ Q ˙ W
7 cdleme35.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 simp3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
9 simp11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q K HL W H
10 simp12l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P A
11 simp13l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q Q A
12 1 2 3 4 5 6 cdlemeulpq K HL W H P A Q A U ˙ P ˙ Q
13 9 10 11 12 syl12anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U ˙ P ˙ Q
14 simp11l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q K HL
15 14 hllatd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q K Lat
16 simp2rl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R A
17 eqid Base K = Base K
18 1 2 3 4 5 6 7 17 cdleme1b K HL W H P A Q A R A F Base K
19 9 10 11 16 18 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F Base K
20 1 2 3 4 5 6 17 cdleme0aa K HL W H P A Q A U Base K
21 9 10 11 20 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q U Base K
22 17 2 4 hlatjcl K HL P A Q A P ˙ Q Base K
23 14 10 11 22 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P ˙ Q Base K
24 17 1 2 latjle12 K Lat F Base K U Base K P ˙ Q Base K F ˙ P ˙ Q U ˙ P ˙ Q F ˙ U ˙ P ˙ Q
25 15 19 21 23 24 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ P ˙ Q U ˙ P ˙ Q F ˙ U ˙ P ˙ Q
26 25 biimpd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ P ˙ Q U ˙ P ˙ Q F ˙ U ˙ P ˙ Q
27 13 26 mpan2d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ P ˙ Q F ˙ U ˙ P ˙ Q
28 17 4 atbase R A R Base K
29 16 28 syl K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R Base K
30 17 1 2 latlej1 K Lat R Base K U Base K R ˙ R ˙ U
31 15 29 21 30 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ R ˙ U
32 1 2 3 4 5 6 7 cdleme35a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ U = R ˙ U
33 31 32 breqtrrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ F ˙ U
34 17 2 latjcl K Lat F Base K U Base K F ˙ U Base K
35 15 19 21 34 syl3anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ U Base K
36 17 1 lattr K Lat R Base K F ˙ U Base K P ˙ Q Base K R ˙ F ˙ U F ˙ U ˙ P ˙ Q R ˙ P ˙ Q
37 15 29 35 23 36 syl13anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ F ˙ U F ˙ U ˙ P ˙ Q R ˙ P ˙ Q
38 33 37 mpand K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ U ˙ P ˙ Q R ˙ P ˙ Q
39 27 38 syld K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ P ˙ Q R ˙ P ˙ Q
40 8 39 mtod K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q ¬ F ˙ P ˙ Q