Metamath Proof Explorer


Theorem cdleme35g

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙ = K
cdleme35.j ˙ = join K
cdleme35.m ˙ = meet K
cdleme35.a A = Atoms K
cdleme35.h H = LHyp K
cdleme35.u U = P ˙ Q ˙ W
cdleme35.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
Assertion cdleme35g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ U ˙ P ˙ Q ˙ F ˙ W = R

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙ = K
2 cdleme35.j ˙ = join K
3 cdleme35.m ˙ = meet K
4 cdleme35.a A = Atoms K
5 cdleme35.h H = LHyp K
6 cdleme35.u U = P ˙ Q ˙ W
7 cdleme35.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 1 2 3 4 5 6 7 cdleme35a K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ U = R ˙ U
9 1 2 3 4 5 6 7 cdleme35e K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q P ˙ Q ˙ F ˙ W = P ˙ R
10 8 9 oveq12d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ U ˙ P ˙ Q ˙ F ˙ W = R ˙ U ˙ P ˙ R
11 1 2 3 4 5 6 7 cdleme35f K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q R ˙ U ˙ P ˙ R = R
12 10 11 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ U ˙ P ˙ Q ˙ F ˙ W = R