Metamath Proof Explorer


Theorem cdleme35h

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one outside of P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 11-Mar-2013)

Ref Expression
Hypotheses cdleme35.l ˙ = K
cdleme35.j ˙ = join K
cdleme35.m ˙ = meet K
cdleme35.a A = Atoms K
cdleme35.h H = LHyp K
cdleme35.u U = P ˙ Q ˙ W
cdleme35.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
cdleme35.g G = S ˙ U ˙ Q ˙ P ˙ S ˙ W
Assertion cdleme35h K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G R = S

Proof

Step Hyp Ref Expression
1 cdleme35.l ˙ = K
2 cdleme35.j ˙ = join K
3 cdleme35.m ˙ = meet K
4 cdleme35.a A = Atoms K
5 cdleme35.h H = LHyp K
6 cdleme35.u U = P ˙ Q ˙ W
7 cdleme35.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 cdleme35.g G = S ˙ U ˙ Q ˙ P ˙ S ˙ W
9 oveq1 F = G F ˙ U = G ˙ U
10 oveq2 F = G Q ˙ F = Q ˙ G
11 10 oveq1d F = G Q ˙ F ˙ W = Q ˙ G ˙ W
12 11 oveq2d F = G P ˙ Q ˙ F ˙ W = P ˙ Q ˙ G ˙ W
13 9 12 oveq12d F = G F ˙ U ˙ P ˙ Q ˙ F ˙ W = G ˙ U ˙ P ˙ Q ˙ G ˙ W
14 13 3ad2ant3 ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G F ˙ U ˙ P ˙ Q ˙ F ˙ W = G ˙ U ˙ P ˙ Q ˙ G ˙ W
15 14 3ad2ant3 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G F ˙ U ˙ P ˙ Q ˙ F ˙ W = G ˙ U ˙ P ˙ Q ˙ G ˙ W
16 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
17 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G P Q
18 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G R A ¬ R ˙ W
19 simp31 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G ¬ R ˙ P ˙ Q
20 1 2 3 4 5 6 7 cdleme35g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W ¬ R ˙ P ˙ Q F ˙ U ˙ P ˙ Q ˙ F ˙ W = R
21 16 17 18 19 20 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G F ˙ U ˙ P ˙ Q ˙ F ˙ W = R
22 simp23 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G S A ¬ S ˙ W
23 simp32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G ¬ S ˙ P ˙ Q
24 1 2 3 4 5 6 8 cdleme35g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q S A ¬ S ˙ W ¬ S ˙ P ˙ Q G ˙ U ˙ P ˙ Q ˙ G ˙ W = S
25 16 17 22 23 24 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G G ˙ U ˙ P ˙ Q ˙ G ˙ W = S
26 15 21 25 3eqtr3d K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W ¬ R ˙ P ˙ Q ¬ S ˙ P ˙ Q F = G R = S