Metamath Proof Explorer


Theorem cdleme35sn3a

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 19-Mar-2013)

Ref Expression
Hypotheses cdleme32s.b B=BaseK
cdleme32s.l ˙=K
cdleme32s.j ˙=joinK
cdleme32s.m ˙=meetK
cdleme32s.a A=AtomsK
cdleme32s.h H=LHypK
cdleme32s.u U=P˙Q˙W
cdleme32s.d D=s˙U˙Q˙P˙s˙W
cdleme32s.n N=ifs˙P˙QID
Assertion cdleme35sn3a KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙Q¬R/sN˙P˙Q

Proof

Step Hyp Ref Expression
1 cdleme32s.b B=BaseK
2 cdleme32s.l ˙=K
3 cdleme32s.j ˙=joinK
4 cdleme32s.m ˙=meetK
5 cdleme32s.a A=AtomsK
6 cdleme32s.h H=LHypK
7 cdleme32s.u U=P˙Q˙W
8 cdleme32s.d D=s˙U˙Q˙P˙s˙W
9 cdleme32s.n N=ifs˙P˙QID
10 eqid R˙U˙Q˙P˙R˙W=R˙U˙Q˙P˙R˙W
11 2 3 4 5 6 7 10 cdleme35fnpq KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙Q¬R˙U˙Q˙P˙R˙W˙P˙Q
12 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QRA
13 simp3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙Q¬R˙P˙Q
14 8 9 10 cdleme31sn2 RA¬R˙P˙QR/sN=R˙U˙Q˙P˙R˙W
15 12 13 14 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sN=R˙U˙Q˙P˙R˙W
16 15 breq1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙QR/sN˙P˙QR˙U˙Q˙P˙R˙W˙P˙Q
17 11 16 mtbird KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙W¬R˙P˙Q¬R/sN˙P˙Q