Metamath Proof Explorer


Theorem cdleme3b

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙ = K
cdleme1.j ˙ = join K
cdleme1.m ˙ = meet K
cdleme1.a A = Atoms K
cdleme1.h H = LHyp K
cdleme1.u U = P ˙ Q ˙ W
cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
Assertion cdleme3b K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F R

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙ = K
2 cdleme1.j ˙ = join K
3 cdleme1.m ˙ = meet K
4 cdleme1.a A = Atoms K
5 cdleme1.h H = LHyp K
6 cdleme1.u U = P ˙ Q ˙ W
7 cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 simpll K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W K HL
9 simpr3l K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R A
10 eqid Base K = Base K
11 10 4 atbase R A R Base K
12 9 11 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R Base K
13 hllat K HL K Lat
14 13 ad2antrr K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W K Lat
15 1 2 3 4 5 6 lhpat2 K HL W H P A ¬ P ˙ W Q A P Q U A
16 15 3adant3r3 K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W U A
17 10 4 atbase U A U Base K
18 16 17 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W U Base K
19 10 2 latjcl K Lat R Base K U Base K R ˙ U Base K
20 14 12 18 19 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ U Base K
21 simpr2l K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W Q A
22 10 4 atbase Q A Q Base K
23 21 22 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W Q Base K
24 simpr1l K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P A
25 10 4 atbase P A P Base K
26 24 25 syl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P Base K
27 10 2 latjcl K Lat P Base K R Base K P ˙ R Base K
28 14 26 12 27 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P ˙ R Base K
29 10 5 lhpbase W H W Base K
30 29 ad2antlr K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W W Base K
31 10 3 latmcl K Lat P ˙ R Base K W Base K P ˙ R ˙ W Base K
32 14 28 30 31 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P ˙ R ˙ W Base K
33 10 2 latjcl K Lat Q Base K P ˙ R ˙ W Base K Q ˙ P ˙ R ˙ W Base K
34 14 23 32 33 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W Q ˙ P ˙ R ˙ W Base K
35 10 3 latmcl K Lat R ˙ U Base K Q ˙ P ˙ R ˙ W Base K R ˙ U ˙ Q ˙ P ˙ R ˙ W Base K
36 14 20 34 35 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ U ˙ Q ˙ P ˙ R ˙ W Base K
37 7 36 eqeltrid K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F Base K
38 10 2 latjcl K Lat R Base K F Base K R ˙ F Base K
39 14 12 37 38 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ F Base K
40 10 2 latjcl K Lat P Base K Q Base K P ˙ Q Base K
41 14 26 23 40 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P ˙ Q Base K
42 10 1 3 latmle2 K Lat P ˙ Q Base K W Base K P ˙ Q ˙ W ˙ W
43 14 41 30 42 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P ˙ Q ˙ W ˙ W
44 6 43 eqbrtrid K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W U ˙ W
45 simpr3r K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W ¬ R ˙ W
46 nbrne2 U ˙ W ¬ R ˙ W U R
47 44 45 46 syl2anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W U R
48 47 necomd K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R U
49 eqid K = K
50 2 49 4 atcvr1 K HL R A U A R U R K R ˙ U
51 8 9 16 50 syl3anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R U R K R ˙ U
52 48 51 mpbid K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R K R ˙ U
53 simpr3 K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R A ¬ R ˙ W
54 24 21 53 3jca K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W P A Q A R A ¬ R ˙ W
55 1 2 3 4 5 6 7 cdleme1 K HL W H P A Q A R A ¬ R ˙ W R ˙ F = R ˙ U
56 54 55 syldan K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ F = R ˙ U
57 52 56 breqtrrd K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R K R ˙ F
58 10 49 cvrne K HL R Base K R ˙ F Base K R K R ˙ F R R ˙ F
59 8 12 39 57 58 syl31anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R R ˙ F
60 oveq2 F = R R ˙ F = R ˙ R
61 60 adantl K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F = R R ˙ F = R ˙ R
62 2 4 hlatjidm K HL R A R ˙ R = R
63 8 9 62 syl2anc K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R ˙ R = R
64 63 adantr K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F = R R ˙ R = R
65 61 64 eqtr2d K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F = R R = R ˙ F
66 65 ex K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F = R R = R ˙ F
67 66 necon3d K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W R R ˙ F F R
68 59 67 mpd K HL W H P A ¬ P ˙ W Q A P Q R A ¬ R ˙ W F R