Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme1.l |
|
2 |
|
cdleme1.j |
|
3 |
|
cdleme1.m |
|
4 |
|
cdleme1.a |
|
5 |
|
cdleme1.h |
|
6 |
|
cdleme1.u |
|
7 |
|
cdleme1.f |
|
8 |
|
simpll |
|
9 |
|
simpr3l |
|
10 |
|
eqid |
|
11 |
10 4
|
atbase |
|
12 |
9 11
|
syl |
|
13 |
|
hllat |
|
14 |
13
|
ad2antrr |
|
15 |
1 2 3 4 5 6
|
lhpat2 |
|
16 |
15
|
3adant3r3 |
|
17 |
10 4
|
atbase |
|
18 |
16 17
|
syl |
|
19 |
10 2
|
latjcl |
|
20 |
14 12 18 19
|
syl3anc |
|
21 |
|
simpr2l |
|
22 |
10 4
|
atbase |
|
23 |
21 22
|
syl |
|
24 |
|
simpr1l |
|
25 |
10 4
|
atbase |
|
26 |
24 25
|
syl |
|
27 |
10 2
|
latjcl |
|
28 |
14 26 12 27
|
syl3anc |
|
29 |
10 5
|
lhpbase |
|
30 |
29
|
ad2antlr |
|
31 |
10 3
|
latmcl |
|
32 |
14 28 30 31
|
syl3anc |
|
33 |
10 2
|
latjcl |
|
34 |
14 23 32 33
|
syl3anc |
|
35 |
10 3
|
latmcl |
|
36 |
14 20 34 35
|
syl3anc |
|
37 |
7 36
|
eqeltrid |
|
38 |
10 2
|
latjcl |
|
39 |
14 12 37 38
|
syl3anc |
|
40 |
10 2
|
latjcl |
|
41 |
14 26 23 40
|
syl3anc |
|
42 |
10 1 3
|
latmle2 |
|
43 |
14 41 30 42
|
syl3anc |
|
44 |
6 43
|
eqbrtrid |
|
45 |
|
simpr3r |
|
46 |
|
nbrne2 |
|
47 |
44 45 46
|
syl2anc |
|
48 |
47
|
necomd |
|
49 |
|
eqid |
|
50 |
2 49 4
|
atcvr1 |
|
51 |
8 9 16 50
|
syl3anc |
|
52 |
48 51
|
mpbid |
|
53 |
|
simpr3 |
|
54 |
24 21 53
|
3jca |
|
55 |
1 2 3 4 5 6 7
|
cdleme1 |
|
56 |
54 55
|
syldan |
|
57 |
52 56
|
breqtrrd |
|
58 |
10 49
|
cvrne |
|
59 |
8 12 39 57 58
|
syl31anc |
|
60 |
|
oveq2 |
|
61 |
60
|
adantl |
|
62 |
2 4
|
hlatjidm |
|
63 |
8 9 62
|
syl2anc |
|
64 |
63
|
adantr |
|
65 |
61 64
|
eqtr2d |
|
66 |
65
|
ex |
|
67 |
66
|
necon3d |
|
68 |
59 67
|
mpd |
|