Metamath Proof Explorer


Theorem cdleme3e

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme3fa and cdleme3 . (Contributed by NM, 6-Jun-2012)

Ref Expression
Hypotheses cdleme1.l ˙ = K
cdleme1.j ˙ = join K
cdleme1.m ˙ = meet K
cdleme1.a A = Atoms K
cdleme1.h H = LHyp K
cdleme1.u U = P ˙ Q ˙ W
cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
cdleme3.3 V = P ˙ R ˙ W
Assertion cdleme3e K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q V A

Proof

Step Hyp Ref Expression
1 cdleme1.l ˙ = K
2 cdleme1.j ˙ = join K
3 cdleme1.m ˙ = meet K
4 cdleme1.a A = Atoms K
5 cdleme1.h H = LHyp K
6 cdleme1.u U = P ˙ Q ˙ W
7 cdleme1.f F = R ˙ U ˙ Q ˙ P ˙ R ˙ W
8 cdleme3.3 V = P ˙ R ˙ W
9 simpl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q K HL W H
10 simpr1 K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q P A ¬ P ˙ W
11 simpr3l K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q R A
12 hllat K HL K Lat
13 12 ad2antrr K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q K Lat
14 eqid Base K = Base K
15 14 4 atbase R A R Base K
16 11 15 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q R Base K
17 simpr1l K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q P A
18 14 4 atbase P A P Base K
19 17 18 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q P Base K
20 simpr2 K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q Q A
21 14 4 atbase Q A Q Base K
22 20 21 syl K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q Q Base K
23 simpr3r K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q ¬ R ˙ P ˙ Q
24 14 1 2 latnlej1l K Lat R Base K P Base K Q Base K ¬ R ˙ P ˙ Q R P
25 13 16 19 22 23 24 syl131anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q R P
26 25 necomd K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q P R
27 1 2 3 4 5 lhpat K HL W H P A ¬ P ˙ W R A P R P ˙ R ˙ W A
28 9 10 11 26 27 syl112anc K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q P ˙ R ˙ W A
29 8 28 eqeltrid K HL W H P A ¬ P ˙ W Q A R A ¬ R ˙ P ˙ Q V A